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The big picture

Phase Transitions

Statistical Mechanics —) Thermodynamics
Low viscosity/low
NDE — dispersion limit
Hydrodynamics —) Singularities

Weak solution
viscous/dispersive

Classical/Dispersive
Shocks




“Case studies”

e Matrix models

® C. Benassi, M. Dell'Atti, A. Moro (2021) Symmetric Matrix Ensemble and Integrable Hydrodynamic Chains, Letters in
Mathematical Physics, Vol. 111, 78.

® C. Benassi, A. Moro (2020) Thermodynamic limit and dispersive regularization in matrix models
Physical Review E, Vol. 101, 052118.
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® G. Biondini, A. Moro, B. Prinari, O. Senkevich (2022) p-star models, mean-field random networks, and the heat hierarchy
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® Magnetic models

® P Lorenzoni, A. Moro (2019) Exact analysis of phase transitions in mean field Potts models
Physical Review E, Vol. 100, 022103.

® E. Agliari, A. Barra, L. Dello Schiavo, A. Moro (2016), Complete integrability and information processing by biochemical
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® A.Barra, A. Di Lorenzo, F. Guerra, A. Moro (2014) On quantum and relativistic mechanical analogues in mean field spin
models. Proc. R. Soc. A, Vol. 470, 20140589.

® Liquid crystals

® G. De Matteis, F. Giglio, A. Moro (2018) Exact Equations of State for Nematics.
Annals of Physics, Vol. 396, pp. 386-396.

® van der Waals type models

® F Giglio, G. Landolfi, A. Moro (2016) Integrable extended van der Waals model. Physica D, Vol. 333, pp. 293-300.

® A.Barra, A. Moro (2015) Exact solution of the van der Waals model in the critical region.
Annals of Physics. Vol. 359, pp. 290-299.

® A. Moro (2014) Shock dynamics of phase diagrams. Annals of Physics. Vol. 343, pp. 49-60.

® G. De Nittis, A. Moro (2012) Thermodynamic phase transitions and shock singularities. Proc. R. Soc. A. Vol. 468, 2139,
701-719.
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Method of differential identities



Mean field Potts model
@ Lorenzoni, M. , PRE 2019

The Hamiltonian is given by

J X
Hy = ~aN Z o(oi, o)

ij=1
where §(o;, 0}) is the Kronecker delta function and o; € {ay, as, . . . aq}-

Note. The case g = 2 corresponds to the mean field Ising model also known
as Curie-Weiss model.
Let us introduce the dressed Hamiltonian

HY =Hy+HY,  where  HY =->"h> o
j=1 i=1
and the partition function
(d)
Zu=3 e "h
{Cn}

where the sum runs over all spin configurations Cy and 8 = 1/T where T is
the temperature.



Key observation:
— ax 0j — ak
S(onop) = S [ 20—
=7 ko AT Gk AT 8
Let us consider the case g = 3 with o; € {—1,0,1}

1
0(oi,0)) = ~0i0j — (0,2 + 0/-2) +1,

2 2

leading to the Hamiltonian of the form

2 2
0','0']'+

NJ 3
HY = > (2 Wi+ 2#2 2#2) = N(hipr + hapi2),

where 1 = SN o;/Nand i = 3, o2 /N are the first and second
moments.



The differential identity

Introducing the re-scaled variables t = 5J/2, x = ghy and y = 8h,, we have
Zn = Z eN[f(%Mer%Mg*?Hz)HM+,VM2],
{Cn}
We observe that Zy satisfies the following PDE

1 /1 3
ZN,t + 2ZN,y = N <§ZN,XX + EZN,yy)

The associated initial condition is obtained by solving the “free" (linear) model
Zno(X,y) = Zu(X,y,0) = (1 + 2€" cosh x)"

for a system of non-interacting spins coupled to the constant external fields x
and y.



Free energy
The free energy is defined as

1
FN = N |Og ZN.
and satisfies the equation
1 3 1 /1 3
FN,t +2FN,y = éF’%’,X + EFﬁ’y+N (éFN,xx + EFNﬁyy)

which can be read as a Hamilton-Jacobi type equation with diffusion term of
order O(1/N) Away from singularities, when N — o

F,+2Fy—%/—'3—%/—'y2:o

with initial condition F(x, y,0) = Fn(x, y,0).
For instance, the expectation values of the moments

OF; OF;
min = (p1)n = aT:V Moy = (p2)n = aTN (Cole-Hopf transform)

Note. my y and mp y satisfy a system of hydrodynamic type.



Thermodynamic limit: solution

Integrating by the method of characteristics, the free energy is given by the

formula , ,
F = xmy + ymo+ Y pgt — > px log px
k=1 k=1
where my = my(x,y,t), me = mu(x, y, t) are stationary points of the free
energy
1 m +ms
1 m: — m?
.y+(3m2 )t 2 og 4(m2_1)2 0
Note: my +m m,—m
p1:% m:% p3:1_m2.

are interpreted as the probabilities of observing macroscopic spin states
+1,-1,0.



Critical sector - Whitney cusps locus
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Moments
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Curie-Weiss case

Curie-Weiss model corresponds to the choice
g=2 o€ {-1,1}

We recover the equation of state

X + mt = arctanh(m)

t<1




A correspondence table

Thermodynamics

Nonlinear conservation laws

Isothermal/isobaric curves <+  Nonlinear waves

Critical point <> Gradient catastrophe
Phase transition < Shock

Maxwell principle < Equal areas rule

Clapeyron Equation < Rankine-Hugoniot condition
Triple point < Shock confluence
Universality < Universality

6 AM., Annals of Physics 2014




Method of differential identities: the two-keys

HHIIL R II
T

\_i L\_‘ \_‘ Comblnatorlcs

Model[t] Free Model[x] : Solutlon[t 0]

P NDE ‘o Inltla‘l .
condition

“Dressed” Model[x,t]




Random Matrix Models



Why Random Matrix Ensembles?

Matrix models are paradigmatic examples of complex systems and arise in a
variety of contexts:

Nuclear Physics

Statistical Mechanics

Integrable Systems

Quantum Field Theory

Quantum Chaos

Stochastic processes

Riemann Zeta function

Neural Networks/Machine Learning

Extensive list of contributions: Wigner, Dyson, Mehta, Marchenko, Pastur,
Tracy, Widom, Witten, Deift, Forrester, McLaughlin, Venakides, Tao,
Okounkov, Eynard, Pandharipande, Venakides, Keating, Snaith, Fokas, lts,
Brezin, ltzykson, Parisi, Zuber, Adler, van Moerbeke, Horozov, Eynard,
Johansson, Borodin, Grava, Clays, Kuijlaars, Cafasso, Ercolani, Pierce,
Jurkiewicz, Ayoama, Kodama, ... and many others ...



Hermitian Matrix Models

Let us consider the partition function of the form
Zn(t) = / e ™M g
Hn

where -
HM) = Tr(—M?/2+ > " t:M)
j=1
is the Hamiltonian function, with t = {t;},>1 the coupling constants, and the

integration is performed over the space #, of n x n Hermitian matrices.
Using a classical result (Weyl)

n
Zn(t) = % /]R A1 ("),
’ i=1

where c, is constant A, = [, ;_;<,(Ai — A)) is the Vandermonde
determinant. o



Bibliographical note

e Random matrix models and orthogonal polynomials: Dyson 1960's,
Mehta 1960’s

® Random matrix models, 2D quantum gravity, integrable systems: Witten
1991; Kontsevich 1992

® Random matrix models and integrable lattices: Gerasimov, Marshakov,
Mironov, Morozov, Orlov, 1991; Adler, van Moerbeke 1995

® |ntegrable systems and genus expansion in TFT: Dubrovin 1992

® Random matrix models and Toda hierarchy (continuum limit): Bonora,
Martellini, Xiong 1992; Ercolani, McLaughlin, Pierce 2008

e Chaotic behaviours in Random Matrix models: Jurkiewicz 1991;
Senechal 1991

e Dispersive regularization vs continuum limit of Toda lattice: Bloch,
Kodama 1991; Deift, McLaughlin 1998

® And many others ...



Hermitian matrix models and Toda Lattice

Let us introduce the function

n

7n(t) == Z_ 1 A,%H (eH()"';') d)\,')

Cn n' Jgn pile
Consider the tridiagonal symmetric matrix (Lax matrix)

a b1 0 0
b1 as bg 0
L=f0o b a b

0 Tit1 TitA Ti—1
log , b=,/ =

oty Ti 72

a; i=1,2,...

Flaschka coordinates: a; — moments; b; — relative displacements



Theorem (Adler-van Moerbeke)

The function 7,(t) is a tau-function of the Toda hierarchy, that is L satisfies

o= 2 (V)Y

where (L¥)_ denotes the skew-symmetric part of the matrix L*.

ay b1 0 0 b1 0
Ls=1|b a b = [ —by 0 bo
0 bg as s 0 — bz 0

E.g.



Initial condition

Hence, 7(t) is the T—function for a particular solution of the Toda lattice
system fixed by the associated initial conditions

an(x,0)=0  by(0) = V.

Note 1: The above follows from direct calculation (Selberg’s integral) of the
quantities

0
Srm®lo =0 (0) = H/'

Note 2: Alternatively, initial conditions can be fixed via Vlrasoro constraints



The “reduction: Volterra/Kac-van Moerbeke lattice

[ Benassi, M., PRE 2020

Let us consider the model with even nonlinear interactions

HM) = Tr(—M?/2+ " t;M?)
j=1
which is described by the even flows of the Toda hierachy.
Above initial conditions suggest to look for solutions of the even hierarchy

such that
a(t)=0 n=1,2,...

leading to the Volterra/Kac-van Moerbeke hierarchy

0B,
Otak

= Bp(VZH) — vy,

where B, = b2 and V{®¥ are suitable functions of the variables B,.



For example, for the first three non-trivial flows we have

VP =B,
v R (
Ve _ @ (

+ VP 4 V,(,ﬂ)

V2
ARAAARER VIR Vi V,Sﬂ)



Solution

Using the string equation
[L,P] =1
where ]
P=—5ls+ > Kty (L2

k>1

we obtain the solution of the Volterra system via the recursion relation
n=8B,-Y 2jt; V¥
j=1

where V@ are taken directly from the r.h.s. of

0Bn

_ By _ 2K
. = B, Ve,

n+1 n—

This formula generalises to any degree of nonlinearity a result by Brézin,
Itzykson, Parisi, Zuber (1978) and Jurkiewicz (1991)



Thermodynamic/Continuum limit

Introduce a positive integer N such that n/N = O(1) and define the
interpolating function B(x) such that

B(x)=B, and B(xzx¢)=Bp1 for x=n/N
with the notation e = 1/N.

Re-scaling
un = Bn/N =eB, Tok = Nk_1t2k = t2k/6k_1

with

u(x) suchthat u(n/N)=un



Thermodynamic/Continuum limit

Formal Taylor expansion in e
oo
n . (k n
ury = > €'Y (Us s, ..., )
n=0

where functions g,(,k) are differential polynomials of u. For instance, the first
member of the hierarchy (for k = 1), which gives the flow with respect to T,
takes the following compact form
1 .
ur, =2u {2 sinh (e@x)} u

where the operator stays for the formal McLaurin expansion of sinh.



For e — 0, we get the Hopf equation
ur, = 2UUx.

Similarly, higher flows in Ty, lead to higher members of the so-called Hopf
hierarchy
ur,, = CkUka

The solution matching the prescribed initial condition follows from the
recursion formula leading to (set e.g. Tox = bk = 0 for all k > 3)

X=U—2Tou—12T4st% — 60Tsl®

viewed as critical point of the free energy functional of density

Flu] = —xu + (% - T2> U —ATu® — 15Tl



Genus zero phase diagram

X =u— 2Tyu — 12T4d? — 60Tgu®
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Dispersive shocks vs “chaotic” behaviours

T;=0,Ty=0.1,Tg = -0.01, €= 0.01

T;=0,T;=0.1,Ts = —0.008, €=0.01

@ Jurkiewicz, PLB 1991

[@ Benassi, M., PRE 2020

Integrability and Complexity
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Dispersive shocks vs “chaotic" behaviours

T =1, Ty= 025, Ts = —0.25

T,=1,T;=-0.25 Ts; = -0.25 € =0.01

T,=1T; =025 Ts = -0.25, € =0.01

—u,

-=- u(x)
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Dispersive shocks vs “chaotic" behaviours

T;=0,T;=01,Ts = -0.005, € =0.01

00 02 04 06 08 10 12 14
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Final remarks

® The method of differential identities provides a general framework for
solving a broad class of statistical mechanical models.

® The theory of integrable hydrodynamic systems and their normal forms
provide a paradigm for the classification of statistical mechanical
models.

e The mathematical connection between Statistical Mechanics,
Hydrodynamics and integrability provides an effective approach to the
solution of models, understand critical phenomena and may lead to the
discovery of new integrable nonlinear differential equations.



Thank you!



