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The reduced Ostrovsky equation

KdV with weak rotation: Ostrovsky equation

>
>

Ur + puty + A = YV, Vi = yu.

1 nonlinearity; A non-hydrostatic; «y rotation

A =0 and v = 0 (non-rotating, hydrostatic)

Inviscid Burgers (Hopf) equation

All localised or periodic solutions break

~ =0 and X # 0 (non-rotating, non-hydrostatic): KdV
No regular initial conditions break

A =0 and v # 0 (rotating, hydrostatic)

Reduced Ostrovsky (Hunter, Vakhnenko) equation.
Some initial conditions break, others do not



The reduced Ostrovsky equation

Rescale equation (1 =1, v = 1). Introduce anti-differentiation operator for
localised or periodic initial data

Oty = / u(x’, t)dx’,

with integration constant chosen so integral over domain or period vanishes (to
satisfy zero-mass constraint). Then

ue + uuy = 95w, (1)

the reduced Ostrovsky equation.
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Microbreaking
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Characteristic co-ordinates

The RedO

ur + uuy = a;lu,
is a quasi-linear first-order pde with one set of characteristics.
On characteristics

dx du

a1
dt—u7 dt_ax u.

Let the characteristics be the lines X'(x, t) = constant. Lagrangian
co-ordinate (Zeitlin et al. 2003, 1D rSWE).

In terms of (X, T) with t = T and u(x, t)=U(X, T)
xr=U,  Ur=0.',

with X =xat T =0.

(2)



Characteristic co-ordinates

X(x,0) =x
Laboratory frame

T. X:XI X:Xz
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F>0 | F<0| F>0
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X

Characteristic (Lagrangian) frame



Characteristic co-ordinates

Our system is thus
xr=U, Ur=09.'U,

with X = xat T =0.
Differentiating wrt X’ gives the pair

XxT = UX, UXTI(?X{?;IU:XX(?X(?;IU:X,YU,

or =W, Wr = ¢U,

where W = Uxr and ¢ = xx is the Jacobian of the transformation to
characteristic co-ordinates.



The Jacobian, ¢

> ¢ is initially unity
» Provided ¢ remains bounded and positive the transformation is 1:1 and
the wave does not break.

> If ¢ passes through zero then the waves overturns (breaks). (Nothing
untoward numerically).
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Kraenkel et al (2011)

Differentiating (1) w.r.t. x twice and rearranging gives
Fi+ (uF)x=0.

where
F?=1-3uy.

i.e. F is a conserved density.



The density F = (1 — 3Uxx)1/3 in characteristic co-ordinates

(Fé)r =0, sothat F¢ = Fo(X),

where Fo(X) = F(X,0) = F(x,0),

determined by the initial conditions.
» Until breaking ¢ > 0. Thus F(X, T) = Fo(X)/p(X, T)

» On each characteristic
> If Fy(X) >0, then F(X, T) >0, VT >0.
> If Fo(X) <0, then F(X, T) <0, VT >O0.
> If Fo(X) =0, then F(X, T) =0, VT >0.
» Until breaking, the X-domain is permanently divided by the initial
conditions into X-intervals where F > 0 and the remaining X-intervals
where F < 0.



The density F in characteristic co-ordinates

X=X, X=X
7}\ P
F>0 | F<0| F>0
S S
||Q ||Q
e
F,>0|F,<0| F,>0

>

X

Characteristic (Lagrangian) frame



Reduction of order, F = (1 — 3uXX)1/3

v w_lUr, _1or  {logolar
No uxx—¢{¢}x—¢{¢}x ) ;

ie.  F =1-(3/¢){logp}x.
Combining this with F¢ = Fo(X) gives

(log 6)xr = (1~ 2), 3)

o (logF)xr = J2(F° ~1), (4)

equations for ¢ and F alone.



Integrability: Fo(X) > 0 VX, F

(1- 3uXX)1/3

following Kraenkel et al.(2011)

>

>
>
>

For smooth bounded initial conditions u. = 0 somewhere.
Thus Fo(X) =1 for some X.
Thus suppose Fo(X) > 0VX at T =0.
Introduce ¢ through the 1:1 mapping defined by
d¢ = (1/3)Fo(X)dX.
Then equations (3),(4) reduce to the integrable Tzitzeica (1910) equation

(log h)er = h—h™2,

where h = ¢/Fo = 1/F. (Kraenkel et al. : Dodd-Bullough, 1977,
equation)

h>0VT sop>0VT



Integrability

> Hence the RedO (1) is integrable for initial data such that Fo > 0

> i.e. if uw < 1/3 everywhere at any instant (including t = 0), then the
interface evolves for all time without breaking (and such that u, < 1/3
everywhere)

» This remains true even if Fo(X') vanishes at isolated values of X' (since the
transformation to ¢ remains 1:1).

> Now suppose there exists an interval x; < x < x in which g > 1/3,
with equality only at the end points. Then Fo(x) < 0 so

F(X,T)<0, YXi<X <X, VYT>O0.



F negative in an interval

X=X, X=X,
A A

>3

F>0 | F<0| F>0

0
0

Fp>0 | Fy<0| F>0

>

X

Characteristic (Lagrangian) frame



The interval X1 < X < Xy, Fp(X) <0

> Integrating equation (3) for ¢ in time (i.e. wrt T) gives

B T) = (ogoh = [ - 5)dT. (%)

» The integrand is positive for all ¢ > 0, with a minimum value of
—272/3F,(X) achieved where ¢ = —2'/3Fy(X), independently of T.

» Thus 8 >0in &1 <X < AX. So ¢x > 0 there. So ¢ cannot achieve a
minimum value in this interval.

» Thus breaking (if it occurs) occurs first at a point corresponding to
uw < 1/3 in initial data (the integrable region).



Breaking

» Now, for each X in the interval A1 < X < A5,

B=(logd)x > -2 *F(X)T,

> Integrating over the interval X1 < X < X5 yields

(X1, T) < ¢p(Xo, T)exp (—aT),

X X2
o= 2*2/3/ (—Fo( X)) dX = 2*2/3/ {(Buom(x) — 1}V/3 dx.
X1 x1

» Thus the Jacobian ¢(X1, T) at the left-hand end of the interval on which
Fo is negative becomes exponentially small compared to its value ¢(Xa, T)
at the right-hand end.



Jacobian minimum

log, o, (T
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The logarithm of the minimum, ¢m(T), over X of the Jacobian ¢(X, T) as a function
of T for the initial profile

up(x) = uy sin (x) + w2 sin (2x + 6),
(where 6 is an arbitrary phase shift). Here uy = 0.3, up = 0.03 and 6y = 3.5453 so

max(toxx) — 1/3 = 4 x 107>, computed with N = 4096 nodes. The wave breaks when
¢m first vanishes, at T = t;, = 2081.7.



Breaking-time scaling
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The scaled time to breaking, aty, for this initial profile for varying 6y as a function of
the excess of ugu over 1/3. The number of nodes in the computations are: ‘+’
N = 2048 and ‘o’ N = 4096.



Jacobian at breaking
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The Jacobian ¢(X, tp) at the instant of breaking. The thinner curve shows Fy(X)
which is negative in a region surrounding 1.317.



Jacobian at breaking - detail

The scaled Jacobian d>(§) as a function of the scaled co-ordinate £. The scaling is
such that the region of negative Fo(X) has unit depth and width 2.



Jacobian at breaking - asymptotic form

» Consider a weakly supercritical initial condition where ugyy is smooth with
maximum at X slightly exceeding 1/3.

> Near X,
Upx = a— b(X — X)2 +-- -,

where a = max(Uoxx) = Uoxx (Xp) and b = —(1/2)upxex (Xo) > 0.

» Then
[Fo(X)P = (3a— 1)[-1+ & + -],

where £ = (X — X)[3b/(3a — 1)]*/2 and ¢ = £1 corresponds to X = X,, Ay in
the general problem.

> Write .
¢ =(3a—1)1/34,

giving the parameter-free generic equation near breaking,
(log $)er = (6/3)[1 + (1 — €%)/97],
where T = er for ¢ = (3a — 1)%/°//3b.

> The time to breaking scales as [max(uox) — 1/3]%/°.



Jacobian minimum at large time

» Dropping the first term in the governing equation (less than 1/8th the second)
gives )
(log ¢) T = —(1/3)Fg /6°.

» This has solution
op=A+B(X)T,

for A constant and B(.X') a function of X' alone, provided AB'(X) = —(1/3)F}.
» Near breaking

X
¢ =A(1— t/ty) + (t/3A) /X F3(x’)da’.

» Since Fp > 0in X < X7 and Fp < 0 in X > A} this gives ¢ increasing
monotonically with distance from a local minimum at X = A} of

bdm = A(l — t/tb).

» The Jacobian does indeed appear to decrease linearly with t at large t until
vanishing at tp.



Jacobian at breaking - detail

The scaled Jacobian d>(§) as a function of the scaled co-ordinate £. The scaling is
such that the region of negative Fo(X) has unit depth and width 2.



Jacobian minimum at large time
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The minimum of the Jacobian, ¢, (T), as a function of time for T > 400. The
dashed line shows the corresponding value of Fy at the same X and T, i.e.
Fm(T) = Fo(Xm(T)). Note that at large T, ¢ is less than 1 Fp,.



Ostrovsky number

» In the unscaled equation an Ostrovsky number can be defined as

Os = 3ur/y*, where k= max]uow(x)].

» Initial conditions with Os > 1 break and those with Os; < 1 do not.
» Increasing nonlinearity (1) or curvature (k) increases Os.

> Increasing rotation () decreases Os.



Modified reduced Ostrovsky equation

» A rotating, hydrostatic, two-layer, Boussinesq fluid where the layers have
equal depths, is governed by the mRO

ue + (1/2)v’u = 05 Mo

» Similar considerations show that

> If |ugx| < 1 everywhere, the wave never breaks.
> If |ugx| > 1 somewhere, the wave breaks in finite time.



Orbital stability of periodic solutions

Travelling 2L-periodic solutions of the reduced Ostrovsky equation have the

normalized form

12 T L
u(x,t) = PU(Z), z=x- ;fyt,

where U(z) is a 2m-periodic solution of the second-order differential equation

d du
— - U)— U(z) =0,
2 lo-0é]+ue
and the parameter «y is proportional to the wave speed.
» U has zero mean.
» U can be taken as even in z.
» U exists for every v € (1, %2)

> Asy — %2 the limiting wave has a (non-smooth) parabolic profile (F = 0).



Lyapunov functional: first try

> Conserved momentum Q(u) = ||u|/%.

» Conserved energy

Ew) = 0 ull + 3 [ v

» Introduce the functional

Sy(u) = E(u) = vQ(u).

» As usual, the Euler-Lagrange equations for S, gives the redO.



First try, second variation

» Take v square integrable 2w N-periodic function with zero mean.
Expand S, (U + v) — 5,(U) to quadratic order in v.

» Obtain second variation

S :/[(B;IV)Zf(WfU)VZ] dz.

v

» Not sign definite.
» Write this as the quadratic form

5257 = (Lyv, V)2,
where L, is the self-adjoint operator

L, ::—82_2—’y+U.



Lyapunov functional: second try

There are other conserved quantities of the redO.

» Higher order energy
(Uxxx)2
Hw = [ ety

> Casimir-type functional C(u) = [(1 — 3ux)"/3dx.

> Define a second energy functional Rr(u) := C(u) — T'H(u),

» Choose parameter [ so the same periodic wave U that is critical point of
S, is a critical point of Rr(u), then

= 7(73 — 6/)72/3,

_1 1 2 2 du 2 Y2 1 4
I = (7 U) (dz) +2U 8U = const.



Second try, second variation

R ~—/ AR Ve dz
r-= (73 _ 6/)2/3 (1 _ 3UN)5/3 :

> Not sign definite.
» Write this as the quadratic form

8°Rr = (Myv, V)2,
where M, is the self-adjoint operator

M, = —92(1 —3U") 202 + (v* — 61) %/,



A linear combination

» Introduce
Ny (u) =S, (u) — cRr(u),
where ¢ € R is a parameter to be defined within an appropriate interval.
» We wish to characterize the spectrum of the linear operator
Key =Ly — cM,.
> K., is self-adjoint with 2m-periodic coefficients by construction.
» By Bloch's theorem it is sufficient to seek eigenfunctions of the form

"™ w(z, k)

with eigenvalues A\(x) where & lies in the Brillouin zone T = [f
w(z, k) is 2w N-periodic.

%,%] and

» Thus introduce the operator
Pe(K) == efmchﬂemi

and look for its 2w N-periodic eigenfunctions w(z, k) and eigenvalues A(k).



Numerical treatment of the operator P, (k)

> Write
Pcr (k) = Ay(k) — cBy(k),
where
A(r) = —(0:+ir) = (y=U),
By(k) = (37— 61 = (77 = 61) (0, + in) (7 — U (0 + i)

» Discretise the linear operators in Fourier space and evaluate products
pseudospectrally, so

A (r) =diag(ki) — F(diag(y — U)F (1)),
B, (k) =(7* — 61)7**1 = (v — 61)"**diag(k®) F(diag(y — U)° F*(diag(k®)),
where F and F~! denote the discrete Fourier transform and its inverse,

k is the wavenumber vector with components x + n and
ki its component-wise inverse.

> Eigenvalues obtained using the Matlab subroutines eig and eigs.



The base periodic solutions

IO’mQAND

> (a) 2m-periodic solutions of the redO for
a=A; =-0.3,-0.5,-0.6,-0.65.

> (b) Log of the absolute value of the Fourier cosine coefficients, A,.

> Dashed: limiting piecewise parabolic wave (a = —2) with coefficients
A, =2(—1)"/3n°.

» Spectral Newton-Kantorovich iteration on A,, 7.



The lowest eigenvalues of the operator P (k) when ¢ = 0.5

4 4

» Left: a= —0.1 and Right : a = —0.2.

» Red dashed: the lowest eigenvalues of the unperturbed operator for a = 0.

» Blue diamonds: computed eigenvalues.
» All repeated eigenvalues for a = 0 are split when a # 0.

» Thus for ¢ = 0.5, Ac,(u) provides a Lyapunov functional for a = —0.1
and a = —0.2.



Small-x, small-a asymptotics (dashed red) and numerics
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> Left: Detail of previous figure (¢ = 0.5, a = —0.1) in neighbourhood of
origin. The two spectral bands split at finite a.

» Centre: The ground spectral band for a = —0.1 but for ¢ = 0.7.

» Thus for ¢ = 0.7, Ac(u) does not provide a Lyapunov functional for
a=—-0.1.

» Right: The first excited spectral band for a = —0.1, ¢ = 0.7.

» Ground state transition from concave upwards (left) to concave
downwards (centre) with increasing |c| is generic.

> At fixed a the graph of the spectral band Ag: (k) is concave upwards at
k =0 for c € (c—, c}) and concave downwards outside this interval.



Determining the positivity of Pc (k)

v

vvyYyy

At fixed a the graph of the spectral band Ag: (k) is concave upwards at
k=0 for c € (c_, c}) and concave downwards outside this interval.

This is first occurrence of a negative eigenvalue of P. (k).
Thus boundaries c+ are determined by changes in sign of A}, (0).
Since A, (0) = 0, the sign of Ay, (0) is the sign of Ag:(dx) for 0 < 6, < 1.
¢+ are thus determined as the values of ¢ for which P ,(d.) has a zero
eigenvalue, i.e. det[P(d.)] =0, i.e.

det[Ay(6x) — cBy(6x)] =0,

i.e eigenvalues of the generalised linear eigenvalue problem

A, (k) = cBy(dx)-

Computations performed for 8, = 1072,107%,107*. Results graphically
indistinguishable.



Region of (c, |a|) plane where P. (k) positive V&

c c
» Left: the reduced Ostrovsky equation
» Right: the modified reduced Ostrovsky equation

» The dashed lines show small |a| expansions for the boundaries



Conclusions

» Reduced Ostrovsky breaks if 3uux > 1, integrable otherwise.

» For small excesses of 3u. over 1, breaking time varies as
[max(uox) — 1/3]%/°.

» Periodic solutions to the reduced Ostrovsky and modified reduced
Ostrovsky equations are orbitally stable.
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