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The reduced Ostrovsky equation

KdV with weak rotation: Ostrovsky equation

ut + µuux + λuxxx = γv , vx = γu.

▶ µ nonlinearity; λ non-hydrostatic; γ rotation

▶ λ = 0 and γ = 0 (non-rotating, hydrostatic)
Inviscid Burgers (Hopf) equation
All localised or periodic solutions break

▶ γ = 0 and λ ̸= 0 (non-rotating, non-hydrostatic): KdV
No regular initial conditions break

▶ λ = 0 and γ ̸= 0 (rotating, hydrostatic)
Reduced Ostrovsky (Hunter, Vakhnenko) equation.
Some initial conditions break, others do not



The reduced Ostrovsky equation

Rescale equation (µ = 1, γ = 1). Introduce anti-differentiation operator for
localised or periodic initial data

∂−1
x u =

∫ x

u(x ′, t)dx ′,

with integration constant chosen so integral over domain or period vanishes (to
satisfy zero-mass constraint). Then

ut + uux = ∂−1
x u, (1)

the reduced Ostrovsky equation.



Previous work

Hunter (1990)
Vakhnenko (1992)
Parkes (1993)
Vakhnenko and Parkes (1998)
Boyd (2004, 2005) (microbreaking)
Stepanyants (2006)
Esler, Rump & Johnson (2009)
Liu et al (2010)
Kraenkel et al (2011)



Microbreaking

B: average of magnitude of highest 128 of 2048 Fourier coefficients.



Characteristic co-ordinates

▶ The RedO
ut + uux = ∂−1

x u, (2)

is a quasi-linear first-order pde with one set of characteristics.

▶ On characteristics

dx

dt
= u,

du

dt
= ∂−1

x u.

▶ Let the characteristics be the lines X (x , t) = constant. Lagrangian
co-ordinate (Zeitlin et al. 2003, 1D rSWE).

▶ In terms of (X ,T ) with t = T and u(x , t)=U(X ,T )

xT = U, UT = ∂−1
x U,

with X = x at T = 0.



Characteristic co-ordinates
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Characteristic co-ordinates

Our system is thus
xT = U, UT = ∂−1

x U,

with X = x at T = 0.

Differentiating wrt X gives the pair

xXT = UX , UXT = ∂X∂−1
x U = xX∂x∂

−1
x U = xXU,

i.e.
ϕT = W , WT = ϕU,

where W = UX and ϕ = xX is the Jacobian of the transformation to
characteristic co-ordinates.



The Jacobian, ϕ

▶ ϕ is initially unity

▶ Provided ϕ remains bounded and positive the transformation is 1:1 and
the wave does not break.

▶ If ϕ passes through zero then the waves overturns (breaks). (Nothing
untoward numerically).



Kraenkel et al (2011)

Differentiating (1) w.r.t. x twice and rearranging gives

Ft + (uF )x = 0 .

where
F 3 = 1− 3uxx .

i.e. F is a conserved density.



The density F = (1− 3uxx)
1/3 in characteristic co-ordinates

(Fϕ)T = 0 , so that Fϕ = F0(X ),

where F0(X ) = F (X , 0) = F (x , 0),

determined by the initial conditions.

▶ Until breaking ϕ > 0. Thus F (X ,T ) = F0(X )/ϕ(X ,T )

▶ On each characteristic
▶ If F0(X ) > 0, then F (X ,T ) > 0, ∀T ≥ 0.
▶ If F0(X ) < 0, then F (X ,T ) < 0, ∀T ≥ 0.
▶ If F0(X ) = 0, then F (X ,T ) = 0, ∀T ≥ 0.

▶ Until breaking, the X -domain is permanently divided by the initial
conditions into X -intervals where F > 0 and the remaining X -intervals
where F < 0.



The density F in characteristic co-ordinates
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Reduction of order, F = (1− 3uxx)
1/3

Now uxx =
1

ϕ
{UX

ϕ
}X =

1

ϕ
{ϕT

ϕ
}X =

{log ϕ}XT

ϕ
,

i.e. F 3 = 1− (3/ϕ){log ϕ}XT .

Combining this with Fϕ = F0(X ) gives

(log ϕ)XT =
ϕ

3
(1− F 3

0

ϕ3
) , (3)

or (log F )XT =
F0

3F
(F 3 − 1) , (4)

equations for ϕ and F alone.



Integrability: F0(X ) > 0 ∀X , F = (1− 3uxx)
1/3

following Kraenkel et al.(2011)

▶ For smooth bounded initial conditions uxx = 0 somewhere.

▶ Thus F0(X ) = 1 for some X .

▶ Thus suppose F0(X ) > 0 ∀X at T = 0.

▶ Introduce ζ through the 1:1 mapping defined by

dζ = (1/3)F0(X )dX .

▶ Then equations (3),(4) reduce to the integrable Tzitzeica (1910) equation

(log h)ζT = h − h−2 ,

where h = ϕ/F0 = 1/F . (Kraenkel et al. : Dodd-Bullough, 1977,
equation)

▶ h > 0 ∀T so ϕ > 0 ∀T



Integrability

▶ Hence the RedO (1) is integrable for initial data such that F0 > 0

▶ i.e. if uxx < 1/3 everywhere at any instant (including t = 0), then the
interface evolves for all time without breaking (and such that uxx < 1/3
everywhere)

▶ This remains true even if F0(X ) vanishes at isolated values of X (since the
transformation to ζ remains 1:1).

▶ Now suppose there exists an interval x1 ≤ x ≤ x2 in which u0xx ≥ 1/3,
with equality only at the end points. Then F0(x) ≤ 0 so

F (X ,T ) < 0, ∀X1 < X < X2, ∀T ≥ 0.



F negative in an interval
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The interval X1 < X < X2, F0(X ) < 0

▶ Integrating equation (3) for ϕ in time (i.e. wrt T ) gives

β(X ,T ) = (log ϕ)X =

∫ T

0

ϕ

3
(1− F 3

0

ϕ3
) dT . (5)

▶ The integrand is positive for all ϕ > 0, with a minimum value of
−2−2/3F0(X ) achieved where ϕ = −21/3F0(X ), independently of T .

▶ Thus β > 0 in X1 ≤ X ≤ X2. So ϕX > 0 there. So ϕ cannot achieve a
minimum value in this interval.

▶ Thus breaking (if it occurs) occurs first at a point corresponding to
uxx < 1/3 in initial data (the integrable region).



Breaking

▶ Now, for each X in the interval X1 < X < X2,

β = (log ϕ)X > −2−2/3F0(X )T ,

▶ Integrating over the interval X1 < X < X2 yields

ϕ(X1,T ) < ϕ(X2,T ) exp (−αT ) ,

α = 2−2/3

∫ X2

X1

(−F0(X )) dX = 2−2/3

∫ x2

x1

{3u0xx(x)− 1}1/3 dx .

▶ Thus the Jacobian ϕ(X1,T ) at the left-hand end of the interval on which
F0 is negative becomes exponentially small compared to its value ϕ(X2,T )
at the right-hand end.



Jacobian minimum
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The logarithm of the minimum, ϕm(T ), over X of the Jacobian ϕ(X ,T ) as a function
of T for the initial profile

u0(x) = u1 sin (x) + u2 sin (2x + θ),

(where θ is an arbitrary phase shift). Here u1 = 0.3, u2 = 0.03 and θ0 = 3.5453 so

max(u0xx )− 1/3 = 4× 10−5, computed with N = 4096 nodes. The wave breaks when

ϕm first vanishes, at T = tb = 2081.7.



Breaking-time scaling
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Jacobian at breaking

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

X/2π

φ
(X

)

The Jacobian ϕ(X , tb) at the instant of breaking. The thinner curve shows F0(X )

which is negative in a region surrounding 1.31π.



Jacobian at breaking - detail

−20 −15 −10 −5 0 5 10 15 20
−1

0

1

2

3

4

5

6

7

8

ξ

φ
(ξ

)

The scaled Jacobian ˆϕ(ξ) as a function of the scaled co-ordinate ξ. The scaling is

such that the region of negative F0(X ) has unit depth and width 2.



Jacobian at breaking - asymptotic form

▶ Consider a weakly supercritical initial condition where u0xx is smooth with
maximum at X0 slightly exceeding 1/3.

▶ Near X0,
u0xx = a− b(X − X0)

2 + · · · ,
where a = max(u0xx ) = u0xx (X0) and b = −(1/2)u0xxxx (X0) > 0.

▶ Then
[F0(X )]3 = (3a− 1)[−1 + ξ2 + · · · ],

where ξ = (X − X0)[3b/(3a− 1)]1/2 and ξ = ±1 corresponds to X = X2,X1 in
the general problem.

▶ Write
ϕ = (3a− 1)1/3ϕ̂,

giving the parameter-free generic equation near breaking,

(log ϕ̂)ξτ = (ϕ̂/3)[1 + (1− ξ2)/ϕ̂3],

where T = ϵτ for ϵ = (3a− 1)5/6/
√
3b.

▶ The time to breaking scales as [max(u0xx )− 1/3]5/6.



Jacobian minimum at large time

▶ Dropping the first term in the governing equation (less than 1/8th the second)
gives

(log ϕ)XT = −(1/3)F 3
0 /ϕ

2.

▶ This has solution
ϕ = A+ B(X )T ,

for A constant and B(X ) a function of X alone, provided AB′(X ) = −(1/3)F 3
0 .

▶ Near breaking

ϕ = A(1− t/tb) + (t/3A)

∫ X1

X
F 3
0 (X ′)dX ′.

▶ Since F0 > 0 in X < X1 and F0 < 0 in X > X1 this gives ϕ increasing
monotonically with distance from a local minimum at X = X1 of

ϕm = A(1− t/tb).

▶ The Jacobian does indeed appear to decrease linearly with t at large t until

vanishing at tb.



Jacobian at breaking - detail
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Jacobian minimum at large time
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Ostrovsky number

▶ In the unscaled equation an Ostrovsky number can be defined as

Os = 3µκ/γ2 , where κ = max[u0xx(x)] .

▶ Initial conditions with Os > 1 break and those with Os ≤ 1 do not.

▶ Increasing nonlinearity (µ) or curvature (κ) increases Os .

▶ Increasing rotation (γ) decreases Os .



Modified reduced Ostrovsky equation

▶ A rotating, hydrostatic, two-layer, Boussinesq fluid where the layers have
equal depths, is governed by the mRO

ut + (1/2)u2ux = ∂−1
x u.

▶ Similar considerations show that
▶ If |u0x | < 1 everywhere, the wave never breaks.
▶ If |u0x | > 1 somewhere, the wave breaks in finite time.



Orbital stability of periodic solutions

Travelling 2L-periodic solutions of the reduced Ostrovsky equation have the
normalized form

u(x , t) =
L2

π2
U(z), z =

π

L
x − L

π
γt,

where U(z) is a 2π-periodic solution of the second-order differential equation

d

dz

[
(γ − U)

dU

dz

]
+ U(z) = 0,

and the parameter γ is proportional to the wave speed.

▶ U has zero mean.

▶ U can be taken as even in z .

▶ U exists for every γ ∈
(
1, π2

9

)
.

▶ As γ → π2

9
the limiting wave has a (non-smooth) parabolic profile (F ≡ 0).



Lyapunov functional: first try

▶ Conserved momentum Q(u) = ∥u∥2L2 .
▶ Conserved energy

E(u) = ∥∂−1
x u∥2L2 +

1

3

∫
u3dx ,

▶ Introduce the functional

Sγ(u) := E(u)− γQ(u).

▶ As usual, the Euler–Lagrange equations for Sγ gives the redO.



First try, second variation

▶ Take v square integrable 2πN-periodic function with zero mean.

▶ Expand Sγ(U + v)− Sγ(U) to quadratic order in v .

▶ Obtain second variation

δ2Sγ =

∫ [
(∂−1

z v)2 − (γ − U)v 2
]
dz .

▶ Not sign definite.

▶ Write this as the quadratic form

δ2Sγ = ⟨Lγv , v⟩L2 ,

where Lγ is the self-adjoint operator

Lγ := −∂−2
z − γ + U.



Lyapunov functional: second try

There are other conserved quantities of the redO.

▶ Higher order energy

H(u) =

∫
(uxxx)

2

(1− 3uxx)7/3
dx ,

▶ Casimir-type functional C(u) =
∫
(1− 3uxx)

1/3dx .

▶ Define a second energy functional RΓ(u) := C(u)− ΓH(u),

▶ Choose parameter Γ so the same periodic wave U that is critical point of
Sγ is a critical point of RΓ(u), then

Γ := −(γ3 − 6I )−2/3,

I =
1

2

(
γ − 1

2
U2

)2 (
dU

dz

)2

+
γ

2
U2 − 1

8
U4 = const.



Second try, second variation

▶

δ2RΓ :=

∫ [
v 2

(γ3 − 6I )2/3
− v 2

zz

(1− 3U ′′)5/3

]
dz .

▶ Not sign definite.

▶ Write this as the quadratic form

δ2RΓ = ⟨Mγv , v⟩L2 ,

where Mγ is the self-adjoint operator

Mγ := −∂2
z (1− 3U ′′)−5/3∂2

z + (γ3 − 6I )−2/3.



A linear combination

▶ Introduce
Λc,γ(u) := Sγ(u)− cRΓ(u),

where c ∈ R is a parameter to be defined within an appropriate interval.

▶ We wish to characterize the spectrum of the linear operator
Kc,γ := Lγ − cMγ .

▶ Kc,γ is self-adjoint with 2π-periodic coefficients by construction.

▶ By Bloch’s theorem it is sufficient to seek eigenfunctions of the form

e iκzw(z , κ)

with eigenvalues λ(κ) where κ lies in the Brillouin zone T =
[
− 1

2
, 1
2

]
and

w(z , κ) is 2πN-periodic.

▶ Thus introduce the operator

Pc,γ(κ) := e−iκzKc,γe
iκz ,

and look for its 2πN-periodic eigenfunctions w(z , κ) and eigenvalues λ(κ).



Numerical treatment of the operator Pc,γ(κ)

▶ Write
Pc,γ(κ) = Aγ(κ)− cBγ(κ),

where

Aγ(κ) = −(∂z + iκ)−2 − (γ − U),

Bγ(κ) = (γ3 − 6I )−2/3 − (γ3 − 6I )−5/3(∂z + iκ)2(γ − U)5(∂z + iκ)2.

▶ Discretise the linear operators in Fourier space and evaluate products
pseudospectrally, so

Âγ(κ) =diag(k21)−F(diag(γ −U)F−1(I)),

B̂γ(κ) =(γ3 − 6I )−2/3I− (γ3 − 6I )−5/3diag(k2)F(diag(γ −U)5F−1(diag(k2)),

where F and F−1 denote the discrete Fourier transform and its inverse,
k is the wavenumber vector with components κ± n and
k1 its component-wise inverse.

▶ Eigenvalues obtained using the Matlab subroutines eig and eigs.



The base periodic solutions
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▶ (a) 2π-periodic solutions of the redO for
a = A1 = −0.3,−0.5,−0.6,−0.65.

▶ (b) Log of the absolute value of the Fourier cosine coefficients, An.

▶ Dashed: limiting piecewise parabolic wave (a = − 2
3
) with coefficients

An = 2(−1)n/3n2.

▶ Spectral Newton-Kantorovich iteration on An, γ.



The lowest eigenvalues of the operator Pc,γ(κ) when c = 0.5
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▶ Left: a = −0.1 and Right : a = −0.2.

▶ Red dashed: the lowest eigenvalues of the unperturbed operator for a = 0.

▶ Blue diamonds: computed eigenvalues.

▶ All repeated eigenvalues for a = 0 are split when a ̸= 0.

▶ Thus for c = 0.5, Λc,γ(u) provides a Lyapunov functional for a = −0.1
and a = −0.2.



Small-κ, small-a asymptotics (dashed red) and numerics

-0.1 -0.05 0 0.05 0.1

κ

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

λ

λex

λgr

-0.1 -0.05 0 0.05 0.1

κ

-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

λ

-0.1 -0.05 0 0.05 0.1

κ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

λ

▶ Left: Detail of previous figure (c = 0.5, a = −0.1) in neighbourhood of
origin. The two spectral bands split at finite a.

▶ Centre: The ground spectral band for a = −0.1 but for c = 0.7.

▶ Thus for c = 0.7, Λc,γ(u) does not provide a Lyapunov functional for
a = −0.1.

▶ Right: The first excited spectral band for a = −0.1, c = 0.7.

▶ Ground state transition from concave upwards (left) to concave
downwards (centre) with increasing |c| is generic.

▶ At fixed a the graph of the spectral band λgr(κ) is concave upwards at
κ = 0 for c ∈ (c−, c+) and concave downwards outside this interval.



Determining the positivity of Pc,γ(κ)

▶ At fixed a the graph of the spectral band λgr(κ) is concave upwards at
κ = 0 for c ∈ (c−, c+) and concave downwards outside this interval.

▶ This is first occurrence of a negative eigenvalue of Pc,γ(κ).

▶ Thus boundaries c± are determined by changes in sign of λ′′
gr(0).

▶ Since λ′
gr(0) = 0, the sign of λ′′

gr(0) is the sign of λgr(δκ) for 0 < δκ ≪ 1.

▶ c± are thus determined as the values of c for which Pc,γ(δκ) has a zero
eigenvalue, i.e. det[Pc,γ(δκ)] = 0, i.e.

det[Aγ(δκ)− cBγ(δκ)] = 0,

i.e eigenvalues of the generalised linear eigenvalue problem

Aγ(δκ) = cBγ(δκ).

▶ Computations performed for δκ = 10−2, 10−3, 10−4. Results graphically
indistinguishable.



Region of (c, |a|) plane where Pc,γ(κ) positive ∀κ
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▶ Left: the reduced Ostrovsky equation

▶ Right: the modified reduced Ostrovsky equation

▶ The dashed lines show small |a| expansions for the boundaries



Conclusions

▶ Reduced Ostrovsky breaks if 3uxxx > 1, integrable otherwise.

▶ For small excesses of 3uxxx over 1, breaking time varies as
[max(u0xx)− 1/3]5/6.

▶ Periodic solutions to the reduced Ostrovsky and modified reduced
Ostrovsky equations are orbitally stable.
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