Mathematics at Oxford Oxford Mathematics Online Open Day May 2025

Andrew Wiles Building

Oxford Mathematics Courses

Joint applications for Maths/Maths&Stats

(choice midway through year 2)

	Degree	Years	Students	
	BA Mathematics	3	~190 with ~90	
	MMath Mathematics	4	in 4 th year	
	BA Maths & Statistics	3		
	MMath Maths & Statistics	4	~ 25 per year	
	BA Maths & Philosophy	3	~ 25 per year	
	MMathPhil Maths & Philosophy	4		
	BA Maths & Computer Science	3		
	MMathCompSci Maths & Comp	4	~25 per year	

Maths Course Structure: Year 1

First year has core courses:

- Linear Algebra
- Group Theory
- Analysis
- Integration
- Vector Geometry
- Multivariable Calculus
- Partial Differential Equations
- Fourier Series

Core courses give everyone a solid foundation for subsequent years, and introduce methods that can be generalized and abstracted.

- Dynamics
- Probability
- Statistics

Maths Course Structure: Later Years

Options begin in Year 2 and include traditional areas of maths as well as new growing areas and links with other subjects:

• Topology, Number Theory, Functional Analysis,...

but also applications of mathematics

• Mathematical Biology, Relativity, Quantum Theory, Machine Learning, Network Theory, Communication Theory,...

as well as investigating possible careers:

• Actuarial Science, Financial Derivatives, Ambassadors Scheme

Can build a broad base of mathematical knowledge or specialize in one particular field.

Typical Week

- Ten 50-minute lectures in Mathematical Institute
- One problem sheet per 2-4 lectures (provided by lecturer)
- Your solutions to problem sheets are marked and discussed in college tutorials
- Self-study, research in libraries and working with fellow students are crucial parts of university study
- All takes ~ 40 hours a week... but leaves time for extra-curricular activities (sport, music, theatre etc.)

More on tutorials and classes

Years 1 and 2

- Typically:
- 2 or 3 paired tutorials a week with college tutors
- Flexible approach to teaching allows us to treat students from different educational backgrounds as individuals
- Years 3 and 4
- Intercollegiate classes as options become more specialised

Assessment

Year 1

- Five 2¹/₂-hour exams at the end of the first year
- Students also do two computational projects

Years 2 – 4

 Mainly exams, but compulsory dissertation in 4th year & some courses examined via project

Admissions

Why?

- We're lucky to have a lot of applicants
- We have a limited number of places on the course
- We want the students with the most potential to succeed

UCAS Application

UCAS Application

- 15 October 2025 is the UCAS deadline
- Write a personal statement
- Details of qualifications you've taken or will take
- Your UCAS referee predicts grades for qualifications not yet completed

Mathematics Admissions Test

Mathematics Admissions Test

• 2 1⁄2 hours

- 25 multiple-choice questions, two longer questions (same format as 2024). No change to syllabus, so past papers are still good practice.
- www.maths.ox.ac.uk/r/mat

H. How many distinct solutions does the following equation have?

$$\log_{x^2+2}(4-5x^2-6x^3) = 2$$

(a) None, (b) 1, (c) 2, (d) 4, (e) Infinitely many.

Interviews

Interviews

- Early December
- Academic in nature
- Online
- We'll ask Maths questions to Maths applicants!

Standard Conditional Offers

Standard Conditional Offers

Maths / Maths & Statistics, Maths & Philosophy;

- (A-level) A*A*A with A*s in Maths & Further Maths
- (IB) 39 with 7,6,6 at HL (7 in HL Maths)
- (Advanced Highers) AAB/AA with A in Maths

Maths & Computer Science;

- A*AA with A in Maths. If Further Mathematics is taken, then including A*A between Mathematics and Further Mathematics; otherwise including A* in Mathematics.
- (IB) 39 with 7,6,6 at HL (7 in HL Maths)
- (Advanced Highers) AAB/AA with A in Maths

Offers – FAQs

• If taking four A-levels incl. Maths and Further Maths

- OK! Offer still likely to be based on three, and might specify which.
- If taking A-level Maths in Y12 and Further Maths in Y13
 - OK! A* in Y12 would usually be counted towards the standard offer, and we would still ask for Further Maths plus one other A-level.
- If not taking A-level Further Maths because it wasn't available
 - OK! We can recommend some extra maths that you might like.
- If not taking A-level Further Maths but it was available
 - Find out if you can take some A-level Further Maths.

Support from Oxford

Support from Oxford

- MAT Livestream www.maths.ox.ac.uk/r/matlive
- Oxford Online Maths Club www.maths.ox.ac.uk/r/club
- Some lectures online on our YouTube channel
- All our lecture notes online www.courses.maths.ox.ac.uk
- Look out for other events

Oxford Online Maths Club

Which numbers can we write as a sum of two squares?								
$1 = 1^2 + 0^2$	$9 = 3^2 + 0^2$	$17 = 4^2 + 1^2$	$25 = 5^2 + 0^2$ $= 4^2 + 3^2$	33 =	41 = 5 ²	+ 4 ²		
$2 = 1^2 + 1^2$	$10 = 3^2 + 1^2$	$18 = 3^2 + 3^2$	$26 = 5^2 + 1^2$	$34 = 5^2 + 3^2$	42 =	Dr James M		
3 =	11 =	19 =	27 =	35 =	43 =			
$4 = 2^2 + 0^2$	12 =	$20 = 4^2 + 2^2$	28 =	$36 = 6^2 + 0^2$	44 =	123		
$5 = 2^2 + 1^2$	$13 = 3^2 + 2^2$	21 =	$29 = 5^2 + 2^2$	$37 = 6^2 + 1^2$	45 = 6 ²			
6 =	14 =	22 =	30 =	38 =	46 =	18 works?		
7 =	15 =	23 =	31 =	39 =	47 =	R Raf		
$8 = 2^2 + 2^2$	$16 = 4^2 + 0^2$	24 =	$32 = 4^2 + 4^2$	$40 = 6^2 + 2^2$	48 =	18 is though		
Oxford Mathematics	Raphael Darley 4^2 +2 = 18 does work							

Find out more

Find out more

- Department prospectus at www.maths.ox.ac.uk/r/prospectus
- University prospectus at www.ox.ac.uk/digital-prospectus
- Email undergraduate.admissions@maths.ox.ac.uk