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Abstract

Integration by Parts. Substitution. Rational Functions. Partial Fractions. Trigonometric Substi-
tutions. Numerical Methods.

Remark 1 We will demonstrate each of the techniques here by way of examples, but concentrating each
time on what general aspects are present. Integration, though, is not something that should be learnt as a
table of formulae, for at least two reasons: one is that most of the formula would be far from memorable,
and the second is that each technique is more flexible and general than any memorised formula ever could
be. If you can approach an integral with a range of techniques at hand you will find the subject less
confusing and not be fazed by new and different functions.

Remark 2 When it comes to checking your answer there are various quick rules you can apply. If
you have been asked to calculate an indefinite integral then, if it’s not too complicated, you can always
differentiate your answer to see if you get the original integrand back. This, of course, applies to definite
integrals as well before you enter the integral’s limits. Even at this point, you can still apply some
simple estimation rules: if your integrand is positive (or negative) then so should your answer be; if
your integrand is less than a well-known function, then its integral will be less than the integral of the
well-known function. These can be useful checks to quickly apply at the end of the calculation.

1 Integration by Parts
Integration by parts (IBP) can be used to tackle products of functions, but not just any product. Suppose
we have an integral Z

f (x) g (x) dx

in mind. This will be susceptible to IBP if one of these functions integrates, or differentiates, perhaps
repeatedly, to something simpler, whilst the other function differentiates and integrates to something of
the same kind. Typically then f (x) might be a polynomial which, after differentiating enough times, will
become a constant; g (x) on the other hand could be something like ex, sinx, cosx, sinhx, coshx, all of
which are functions which continually integrate to something similar. This remark reflects the nature of
the formula for IBP which is:

Proposition 3 (Integration by Parts) Let F and G be functions with derivatives f and g. ThenZ
F (x) g (x) dx = F (x)G (x)−

Z
f (x)G (x) dx.

∗These handouts are produced by Richard Earl, who is the Schools Liaison and Access Officer for mathematics, statistics
and computer science at Oxford University. Any comments, suggestions or requests for other material are welcome at
earl@maths.ox.ac.uk
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IBP takes the integral of a product and leaves us with another integral of a product – but as we
commented above, the point is that f (x) should be a simpler function than F (x) was whilst G (x) should
be no worse a function than g (x) was.

Proof. The proof is simple – we just integrate the product rule of differentiation below, and rearrange.

d
dx
(F (x)G (x)) = F (x) g (x) + f (x)G (x)

Example 4 Determine Z
x2 sinx dx and

Z 1

0

x3e2x dx.

Clearly x2 will be the function that we need to differentiate down, and sinx is the function that will
integrate in house. So we have, with two applications of IBP:Z

x2 sinx dx = x2 (− cosx)−
Z
2x (− cosx) dx [IBP]

= −x2 cosx+
Z
2x cosx dx [Rearranging]

= −x2 cosx+ 2x sinx−
Z
2 sinx dx [IBP]

= −x2 cosx+ 2x sinx− 2 (− cosx) + const.
=

¡
2− x2

¢
cosx+ 2x sinx+ const. [Rearranging]

In a similar fashion Z 1

0

x3e2x dx =

∙
x3

e2x

2

¸1
0

−
Z 1

0

3x2
e2x

2
dx [IBP]

=
e2

2
−
Ã∙
3x2

e2x

4

¸1
0

−
Z 1

0

6x
e2x

4
dx

!
[IBP]

=
e2

2
− 3e

2

4
+

∙
6x

e2x

8

¸1
0

−
Z 1

0

6
e2x

8
dx [IBP]

=
−e2
4
+
3e2

4
−
∙
6e2x

16

¸1
0

=
e2

8
+
3

8
.

This is by far the main use of IBP, the idea of eventually differentiating out one of the two functions.
There are other important uses of IBP which don’t quite fit into this type. These next two examples
fall into the original class, but are a little unusual : in these cases we choose to integrate the polynomial
factor instead as it is easier to differentiate the other factor. This is the case when we have a logarithm
or an inverse trigonometric function as the second factor.

Example 5 Evaluate Z
(2x− 1) ln

¡
x2 + 1

¢
dx and

Z ¡
x2 − 4

¢
tan−1 x dx.

In both cases integrating the second factor looks rather daunting but each factor differentiates nicely;
recall that

d
dx
lnx =

1

x
and that

d
dx
tan−1 x =

1

1 + x2
.
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So if we apply IBP to the above examples then we getZ
(2x− 1) ln

¡
x2 + 1

¢
dx =

¡
x2 − x

¢
ln
¡
x2 + 1

¢
−
Z ¡

x2 − x
¢ 2x

x2 + 1
dx,

and Z ¡
3x2 − 4

¢
tan−1 x dx =

¡
x3 − 4x

¢
tan−1 x−

Z ¡
x3 − 4x

¢ 1

x2 + 1
dx.

Here we will stop for the moment – we will see how to determine these integrals, the integrands of which
are known as rational functions, in section 3.

In the same vein as this we can use IBP to integrate functions which, at first glance, don’t seem to
be a product – this is done by treating a function F (x) as the product F (x)× 1.

Example 6 Evaluate Z
lnx dx and

Z
tan−1 x dx.

With IBP we see (integrating the 1 and differentiating the lnx)Z
lnx dx =

Z
1× lnx dx

= x lnx−
Z

x
1

x
dx

= x lnx−
Z
dx

= x lnx− x+ const.

and similarly Z
tan−1 x dx =

Z
1× tan−1 x dx

= x tan−1 x−
Z

x
1

1 + x2
dx

= x tan−1 x− 1
2
ln
¡
1 + x2

¢
+ const.

spotting this by inspection or by using substitution (see the next section).

Sometimes both functions remain in house, but we eventually return to our original integrand.

Example 7 Determine Z
ex sinx dx.

Both of these functions now remain in house, but if we apply IBP twice, integrating the ex and differen-
tiating the sinx, then we seeZ

ex sinx dx = ex sinx−
Z

ex cosx dx [IBP]

= ex sinx−
µ
ex cosx−

Z
ex (− sinx) dx

¶
= ex (sinx− cosx)−

Z
ex sinx dx.

We see that we have returned to our original integral, and so we can rearrange this equality to getZ
ex sinx dx =

1

2
ex (sinx− cosx) + const.
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2 Substitution
In many ways the hardest aspect of integration to teach, a technique that can become almost an art form,
is substitution. Substition is such a varied and flexible approach that it is impossible to classify (and
hence limit) its uses, and quite difficult even to find general themes within. We shall discuss later some
standard trigonometric substitutions useful in integrating rational functions. For now we will simply
state what substitution involves and highlight one difficulty than can occur (and cause errors) unless
substitution is done carefully.

Proposition 8 Let g : [c, d] → [a, b] be an increasing function, such that g (c) = a and g (d) = b, and
which has derivative g0. Then Z b

a

f (x) dx =
Z d

c

f (g (t)) g0 (t) dt.

Similarly if g : [c, d]→ [a, b] is a decreasing function, such that g (c) = b and g (d) = a, thenZ b

a

f (x) dx =
Z c

d

f (g (t)) g0 (t) dt.

The important point here is that the function g be increasing or decreasing so that it is a bijection
from [c, d] to [a, b] – what this technical term simply means is that to each value of x in the range [a, b]
there should be exactly one value of t in the range [c, d] such that g (t) = x. Here is an example of what
might go wrong if substitution is incorrectly applied.

Example 9 Evaluate Z 2

−1
x2 dx.

This is not a difficult integral and we would typically not think of using substitution to do this; we would
just proceed and find Z 2

−1
x2 dx =

∙
x3

3

¸2
−1
=
1

3

³
23 − (−1)3

´
=
9

3
= 3.

But suppose that we’d tried to use (in a less than rigorous fashion) the substitution u = x2 here. We’d
see that

du = 2xdx = 2
√
udx so that dx =

du
2
√
u

and when x = −1, u = 1 and when x = 2, u = 4.

So surely we’d findZ 2

−1
x2 dx =

Z 4

1

u
du
2
√
u
=
1

2

Z 4

1

√
u du =

1

2

∙
2

3
u3/2

¸4
1

=
1

3
(8− 1) = 7

3
.

What’s gone wrong is that the assignment u = x2 doesn’t provide a bijection between [−1, 2] and [1, 4]
as the values in [−1, 0] square to the same values as those in [0, 1] . The missing 2/3 error in the answer
is in fact the integral

R 1
−1 x

2 dx. If we’d particularly wished to use this substitution here then it could
have been correctly made by splitting our integral asZ 2

−1
x2 dx =

Z 0

−1
x2 dx+

Z 2

0

x2 dx

and using the substitution u = x2 separately on each integral; this would work because u = x2 gives a
bijection between [−1, 0] and [0, 1] , and between [0, 2] and [0, 4] .
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Here are some examples where substitution can be applied, provided some care is taken.

Example 10 Evaluate the following integralsZ 1

0

1

1 + ex
dx,

Z π

−π

sinx

1 + cosx
dx.

In the first integral a substitution that might suggest itself is u = 1 + ex or u = ex; let’s try the first
of these u = 1+ ex. As x varies from x = 0 to x = 1 then u varies from u = 2 to u = 1+ e. Morever u is
increasing with x so that the rule u = 1 + ex is a bijection from the x-values in [0, 1] to the u-values in
the range [2, 1 + e] . We also have that

du = exdx = (u− 1)dx.

So Z 1

0

1

1 + ex
dx =

Z 1+e

2

1

u

du
u− 1 [substitution]

=

Z 1+e

2

µ
1

u− 1 −
1

u

¶
du [using partial fractions]

= [ln |u− 1|− ln |u|]1+e2

= ln (e)− ln (1 + e)− ln 1 + ln 2

= 1 + ln

µ
2

1 + e

¶
.

For the second integral, it would seem sensible to use u = 2 + cosx or u = cosx here. Let’s try
the second one: u = cosx. Firstly note that u is not a bijection on the range [−π/2, π] , it takes the
same values in the range [−π/2, 0] as it does in the range [0, π/2] . In fact the integrand is odd (that is
f (−x) = −f (x)) and so its integral between x = −π/2 and π/2 will be zero automatically. So we can
write Z π

−π/2

sinx

2 + cosx
dx =

Z π/2

−π/2

sinx

2 + cosx
dx+

Z π

π/2

sinx

2 + cosx
dx

=

Z π

π/2

sinx

2 + cosx
dx.

Now we can use the substitution u = cosx noticing that du = − sinx dx, when x = π/2, u = 0 and when
x = π, u = −1, so that Z π

−π/2

sinx

2 + cosx
dx =

Z −1
0

−du
2 + u

= − [ln |2 + u|]−10
= −(ln 1− ln 2)
= ln 2.
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3 Rational Functions
A rational function is one of the form

amx
m + am−1x

m−1 + · · ·+ a0
bnxn + bn−1xn−1 + · · ·+ b0

,

where the ai and bi are constants – that is, the quotient of two polynomials. In principle, (because of
the Fundamental Theorem of Algebra which says that the roots of the denominator can all be found in
the complex numbers), it is possible to rewrite the denominator as

bnx
n + bn−1x

n−1 + · · ·+ b0 = p1 (x) p2 (x) · · · pk (x)

where the polynomials pi (x) are either linear factors (of the form Ax+ B) or quadratic factors (Ax2 +
Bx + C) with B2 < 4AC and complex conjugates for roots. From here we can use partials fractions to
simplify the function.

3.1 Partial Fractions

Given a rational function
amx

m + am−1x
m−1 + · · ·+ a0

p1 (x) p2 (x) · · · pk (x)
where the factors in the denominator are linear or quadratic terms, we follow several simple steps to put
it into a form we can integrate.

1. if the numerator has greater degree than the denominator, then we divide the denominator into the
numerator (using polynomial long division) till we have an expression of the form

P (x) +
Aix

i +Ai−1x
i−1 + · · ·+A0

p1 (x) p2 (x) · · · pk (x)

where P (x) is a polynomial, and the numerator Aix
i + Ai−1x

i−1 + · · · + A0 now has a strictly
smaller degree than the denominator p1 (x) p2 (x) · · · pk (x) . Of course, integrating the polynomial
part P (x) will not cause us any difficulty so we will ignore it from now on.

2. Let’s suppose, for now, that none of the factors in the denominator are the same. In this case we
can use partial fractions to rewrite this new rational function as

Aix
i +Ai−1x

i−1 + · · ·+A0
p1 (x) p2 (x) · · · pk (x)

=
α1 (x)

p1 (x)
+

α2 (x)

p2 (x)
+ · · ·+ αk (x)

pk (x)

where each polynomial αi (x) is of smaller degree than pi (x) . This means that we have rewritten
the rational function in terms of rational functions of the form

A

Bx+ C
and

Ax+B

Cx2 +Dx+E

which we will see how to integrate in the next subsection.

3. If however a factor, say p1 (x) , is repeated N times say, then rather than the α1 (x) /p1 (x) term in
the equation above, the best we can do with partial fractions is to reduce it to an expression of the
form

β1 (x)

p1 (x)
+

β2 (x)

(p1 (x))
2 + · · ·+

βN (x)

(p1 (x))
N

where the polynomials βi (x) have smaller degree than p1 (x) . This means the final expression may
include functions of the form

A

(Bx+ C)n
and

Ax+B

(Cx2 +Dx+E)n
where D2 < 4CE.
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Example 11 Use the method of partial fractions to write the following rational function in simpler form

x5

(x− 1)2 (x2 + 1)
.

The numerator has degree 5 whilst the denominator has degree 4, so we will need to divide the
denominator into the numerator first. The denominator expands out to

(x− 1)2
¡
x2 + 1

¢
= x4 − 2x3 + 2x2 − 2x+ 1.

Using polynomial long-division we see that

x +2
x4 − 2x3 + 2x2 − 2x+ 1 x5 +0x4 +0x3 +0x2 +0x +0

x5 −2x4 +2x3 −2x2 +x
2x4 −2x3 +2x2 −x +0
2x4 −4x3 +4x2 −4x +2

2x3 −2x2 +3x −2

So we have that
x5

(x− 1)2 (x2 + 1)
≡ x+ 2 +

2x3 − 2x2 + 3x− 2
(x− 1)2 (x2 + 1)

,

which leaves us to find the constants A,B,C,D, in the identity

2x3 − 2x2 + 3x− 2
(x− 1)2 (x2 + 1)

≡ A

x− 1 +
B

(x− 1)2
+

Cx+D

x2 + 1
.

Multiplying through by the denominator, we find

2x3 − 2x2 + 3x− 2 ≡ A (x− 1)
¡
x2 + 1

¢
+B

¡
x2 + 1

¢
+ (Cx+D) (x− 1)2 .

As this holds for all values of x, then we can set x = 1 to deduce

2− 2 + 3− 2 = 1 = 2B and so B =
1

2
.

If we set x = 0 then we also get that

−2 = −A+ 1
2
+D. (1)

Other things we can do are to compare the coefficients of x3 on either side which gives

2 = A+ C (2)

and to compare the coefficients of x which gives

3 = A+ C − 2D. (3)

Substituting (2) into (3) yields 3 = 2− 2D and so D = −1/2. From equation (1) this means that A = 2
and so C = 0. Finally then we have

2x3 − 2x2 + 3x− 2
(x− 1)2 (x2 + 1)

≡ 2

x− 1 +
1/2

(x− 1)2
− 1/2

x2 + 1

and
x5

(x− 1)2 (x2 + 1)
≡ x+ 2 +

2

x− 1 +
1/2

(x− 1)2
− 1/2

x2 + 1
.
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3.2 Trigonometric Substitutions

If we look now at the function we are faced with, namely

x+ 2 +
2

x− 1 +
1/2

(x− 1)2
− 1/2

x2 + 1
,

then only the final term is something that would cause trouble from an integrating point. To deal with
such functions we recall the trigonometric identities

sin2 θ + cos2 θ = 1, 1 + tan2 θ = sec2 θ, 1 + cot2 θ = csc2 θ. (4)

So a substitution of the form x = tan θ into an expression like 1 + x2 simplifies it to sec2 θ. Noting

dx = sec2 θ dθ

we find Z
dx

1 + x2
=

Z
sec2 θ dθ
1 + tan2 θ

=

Z
sec2 θ dθ
sec2 θ

=

Z
dθ

= θ + const.

= tan−1 x+ const.

So returning to our example we seeZ
x5 dx

(x− 1)2 (x2 + 1)
≡

Z Ã
x+ 2 +

2

x− 1 +
1/2

(x− 1)2
− 1/2

x2 + 1

!
dx

=
x2

2
+ 2x+ 2 ln |x− 1|− 1/2

x− 1 −
1

2
tan−1 x+ const.

Returning to the most general form of a rational function, we were able to reduce (using partial
fractions) the problem to integrands of the form

A

(Bx+ C)
n and

Ax+B

(Cx2 +Dx+E)
n where D2 < 4CE.

Integrating functions of the first type causes us no difficulty asZ
A dx

(Bx+ C)
n =

(
A

B(1−n) (Bx+ C)
1−n

+ const. n 6= 1;
A
B ln |Bx+ C|+ const. n = 1.

The second integrand can be simplified, firstly by completing the square and then with a trigonometric
substitution. Note that

Cx2 +Dx+E = C

µ
x+

D

2C

¶2
+

µ
E − D2

4C

¶
.

If we make a substitution of the form u = x+D/2C then we can simplify this integral to something of
the form Z

(au+ b) du
(u2 + k2)n

for new constants a, b and k > 0.

Part of this we can integrate directly:Z
u du

(u2 + k2)
n =

(
1

2(1−n)
¡
u2 + k2

¢1−n
+ const. n 6= 1;

1
2 ln

¡
u2 + k2

¢
+ const. n = 1.
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The other integral Z
du

(u2 + k2)
n

can be simplified with a trigonometric substitution u = k tan θ, the integral becomingZ
du

(u2 + k2)n
=

Z
k sec2 θ dθ¡

k2 tan2 θ + k2
¢n

=
1

k2n−1

Z
sec2 θ dθ
(sec2 θ)n

=
1

k2n−1

Z
cos2n−2 θ dθ.

The n = 0, 1, 2 cases can all easily be integrated. We will see in the next section on Reduction Formulae
how to deal generally with integrals of this form. For now we will simply give an example where n = 2.

Example 12 Determine

I =

Z
dx

(3x2 + 2x+ 1)2

Remember that the first step is to complete the square:

I =

Z
dx

(3x2 + 2x+ 1)2

=
1

9

Z
dx¡

x2 + 2
3x+

2
3

¢2
=

1

9

Z
dx³¡

x+ 1
3

¢2
+ 2

9

´2
Our first substitution is simply a translation – let u = x+ 1/3 noting that du =dx :

I =
1

9

Z
dx³¡

x+ 1
3

¢2
+ 2

9

´2 = 1

9

Z
du

(u2 + 2/9)2

Then we set u =
√
2
3 tan θ to further simplify the integral. So

I =
1

9

Z ¡
2/
√
3
¢
sec2 θ dθ

(2 sec2 θ/9)2

=
1

9
× 2√

3
×
µ
9

2

¶2 Z
cos2 θ dθ

=
9

2
√
3

Z
1

2
(1 + cos 2θ) dθ [using cos 2θ = 2 cos2 θ − 1]

=
9

4
√
3

µ
θ +

1

2
sin 2θ

¶
+ const.

=
9

4
√
3
(θ + sin θ cos θ) + const. [using sin 2θ = 2 sin θ cos θ]

=
9

4
√
3

µ
tan−1

3u√
2
+ sin tan−1

3u√
2
cos tan−1

3u√
2

¶
+ const.

by undoing the substitution u =
√
2
3 tan θ.
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From the right-angled triangle

x

è!!!!!!!!!!!!!
1 + x2

1

tan−1x

we see that
sin tan−1 x =

x√
1 + x2

and cos tan−1 x =
1√
1 + x2

.

So

I =
9

4
√
3

Ã
tan−1

3u√
2
+

3u/
√
2p

1 + 9u2/2
× 1p

1 + 9u2/2

!
+ const.

=
9

4
√
3

µ
tan−1

3u√
2
+

6u√
2 (2 + 9u2)

¶
+ const.

=
9

4
√
3

µ
tan−1

µ
3√
2

µ
x+

1

3

¶¶
+

6x+ 2√
2 (9x2 + 6x+ 3)

¶
+ const.

=
9

4
√
3

µ
tan−1

µ
3x+ 1√

2

¶
+

2(3x+ 1)

3
√
2 (3x2 + 2x+ 1)

¶
+ const.

This example surely demonstrates the importance of remembering the method and not the formula!

3.3 Further Trigonometric Substitutions

The trigonometric identities in equation (4) can be applied in more general cases than those above used
for integrating rational functions above. A similar standard trigonometric integral isZ

dx√
1− x2

= sin−1 x+ const.

This can be deduced in exactly the same way: this time we make use of the trigonometric identity

1− sin2 θ = cos2 θ

and make a substitution x = sin θ to begin this calculation. Likewise the integralZ
dx√

3x2 + 2x+ 1

could be tackled with the substitutions we used in the previous example.

Multiple angle trigonometric identities can also be very useful: we have already made use of the
formula

cos 2θ = 2 cos2 θ − 1
to determine the integral of cos2 θ. Likewise, in principle ,we could integrate cosn θ by first writing it
in terms of cos kθ (for various k) – we will see how to do this in the class on complex numbers, but
approach this integral in other ways in the next section on reduction formulae.
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We close this section with a look at the t-substitution, which makes use of the half-angle tangent
formulas. Faced with the integral Z π

0

dθ
2 + cos θ

,

we make a substitution of the form

t = tan
θ

2
.

Each of the trigonometric functions sin, cos, tan can be written in terms of t. The formulae are

sin θ =
2t

1 + t2
, cos θ =

1− t2

1 + t2
, tan θ =

2t

1− t2
.

An easy way to remember these formulae is probably by means of the right-angled triangle:

2t
1+t2

1−t2

θ=2tan−1t

If we make this substitution in the above integral then firstly we need to note that t = tan (θ/2) is a
bijection from the range [0, π) to the range [0,∞). Also

dθ = d
¡
2 tan−1 t

¢
=

2 dt
1 + t2

.

So Z π

0

dθ
2 + cos θ

=

Z ∞
0

1

2 + 1−t2
1+t2

2 dt
1 + t2

=

Z ∞
0

2 dt
2 + 2t2 + 1− t2

=

Z ∞
0

2 dt
3 + t2

=

∙
2√
3
tan−1

t√
3

¸∞
0

=
2√
3

³π
2
− 0
´

=
π√
3
.
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4 Reduction Formulae
In the previous section on integrating rational functions we were left with the problem of calculating

In =

Z
cosn θ dθ,

and we will approach such integrals using reduction formulae. The idea is to write In in terms of other
Ik where k < n, eventually reducing the problem to calculating I0, or I1 say, which are simple integrals.
Using IBP we see

In =

Z
cosn−1 θ × cos θ dθ

= cosn−1 θ sin θ −
Z
(n− 1) cosn−2 θ (− sin θ) sin θ dθ

= cosn−1 θ sin θ + (n− 1)
Z
cosn−2 θ

¡
1− cos2 θ

¢
dθ

= cosn−1 θ sin θ + (n− 1) (In−2 − In) .

Rearranging this we see

In =
cosn−1 θ sin θ

n
+

n− 1
n

In−2.

With this reduction formula In can be rewritten in terms of simpler and simpler integrals until we are left
only needing to calculate I0, if n is even, or I1, if n is odd – both these integrals are easy to calculate.

Example 13 Calculate

I7 =

Z
cos7 θ dθ.

Using the reduction formula above

I7 =
cos6 θ sin θ

7
+
6

7
I5

=
cos6 θ sin θ

7
+
6

7

µ
cos4 θ sin θ

5
+
4

5
I3

¶
=

cos6 θ sin θ

7
+
6 cos4 θ sin θ

35
+
24

35

µ
cos2 θ sin θ

3
+
2

3
I1

¶
=

cos6 θ sin θ

7
+
6 cos4 θ sin θ

35
+
24 cos2 θ sin θ

105
+
48

105
sin θ + const.

Example 14 Calculate Z 1

0

x3e2x dx

This is an integral we previously calculated in the first section. We can approach this in a simpler, yet
more general, fashion by setting up a reduction formula. For a natural number n let

Jn =

Z 1

0

xne2x dx

We can use then integration by parts to show

Jn =

∙
xn

e2x

2

¸1
0

−
Z 1

0

nxn−1
e2x

2
dx

=
e2

2
− n

2
Jn−1 if n ≥ 1.

12



and so the calculation in Example 4 simplifies enormously (at least on the eye). We first note

J0 =

Z 1

0

e2x dx =
∙
e2x

2

¸1
0

=
e2 − 1
2

,

and then applying the reduction formula:

J3 =
e2

2
− 3
2
J2

=
e2

2
− 3
2

µ
e2

2
− 2
2
J1

¶
=

e2

2
− 3e

2

4
+
3

2

µ
e2

2
− 1
2
J0

¶
=

e2

8
+
3

8
.

Some integrands may involve two variables, such as:

Example 15 Calculate for positive integers m,n the integral

B (m,n) =

Z 1

0

xm−1 (1− x)
n−1 dx.

Calculating either B (m, 1) or B (1, n) is easy; for example

B (m, 1) =

Z 1

0

xm−1 dx =
1

m
. (5)

So it would seem best to find a reduction formula that moves us towards either of these integrals. Using
integration by parts, if n ≥ 2 we have

B (m,n) =

∙
xm

m
(1− x)n−1

¸1
0

−
Z 1

0

xm

m
× (n− 1)× (−1) (1− x)n−2 dx

= 0 +
n− 1
m

Z 1

0

xm (1− x)
n−2 dx

=
n− 1
m

B (m+ 1, n− 1) .

So if n ≥ 2 we can apply this to see

B (m,n) =
n− 1
m

B (m+ 1, n− 1)

=
n− 1
m

× n− 2
m+ 1

B (m+ 2, n− 2)

=

µ
n− 1
m

¶µ
n− 2
m+ 1

¶
· · ·
µ

1

m+ n− 2

¶
B (m+ n− 1, 1)

=

µ
n− 1
m

¶µ
n− 2
m+ 1

¶
· · ·
µ

1

m+ n− 2

¶
1

m+ n− 1

=
(n− 1)!

(m+ n− 1)!/ (m− 1)!

=
(m− 1)! (n− 1)!
(m+ n− 1)! .

We have, in fact, already checked that this formula holds for the case n = 1 in equation (5).
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5 Numerical Methods
Of course it’s not always possible to calculate integrals exactly and there are numerical rules that will
provide approximate values for integrals – approximate values, which by ‘sampling’ the function more
and more times, can be made better and better.
Suppose that f : [a, b] → R is the function we are wishing to integrate. Our idea will be to sample

the function at n+ 1 evenly spread points through the interval:

xk = a+ k

µ
b− a

n

¶
for k = 0, 1, 2, . . . , n,

so that x0 = a and xn = b. The corresponding y-value we will denote as

yk = f (xk) .

For ease of notation the width between each sample we will denote as

h =
b− a

n
.

There are various rules for making an estimate for the integrals of the function based on this data.
We will consider the Trapezium Rule and Simpson’s Rule.

• Trapezium Rule. This estimates the area as:

h
³y0
2
+ y1 + y2 + · · ·+ yn−1 +

yn
2

´
.

This estimate is arrived at (as you might guess from the name) by approximating the area under the
graph with trapezia. We presume that the graph behaves linearly between (xk, yk) and (xk+1, yk+1)
and take the area under the line segment connecting these points as our contribution.

• Simpson’s Rule. This requires that n be even and estimates the area as:

h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn) .

The more sophisticated Simpson’s Rule works on the presumption that between the three points
(xk, yk) , (xk+1, yk+1) , (xk+2, yk+2) (where k is even) the function f will change quadratically and
it calculates the area contributed beneath each of these quadratic curves.

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

Trapezium Rule: n = 4
0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

Simpson’s Rule: n = 4

The above two graphs show applications of the trapezium rule and Simpson’s rule in calculatingZ π/2

0

sin
¡
x2
¢
dx

with n = 4 subintervals.
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Example 16 Estimate the integral Z 1

0

x3 dx

using both the trapezium rule and Simpson’s rule using 2n intervals.

This is, of course, an integral we can calculate exactly as 1/4. The two rules above give us:

Trapezium Approximation =
1

2n

Ã
03

2
+

µ
1

2n

¶3
+ · · ·+

µ
2n− 1
2n

¶3
+
13

2

!

=
1

2n

Ã
1

8n3

2n−1X
k=1

k3 +
1

2

!

=
1

2n

µ
1

8n3
× 1
4
(2n− 1)2 (2n)2 + 1

2

¶
=

4n2 + 1

16n2

=
1

4
+

1

16n2
.

and we also have

Simpson’s Approximation =
1

6n

Ã
03 + 4

µ
1

2n

¶3
+ 2

µ
2

2n

¶3
+ · · ·+ 13

!

=
1

6n

Ã
0 +

4

(2n)3

2n−1X
k=1

k3 − 2

(2n)3

n−1X
k=1

(2k)3 + 1

!

=
1

6n

µ
4

8n3
× 1
4
(2n− 1)2 (2n)2 − 2

8n3
× 8× 1

4
(n− 1)2 n2 + 1

¶
=

3n2

12n2

=
1

4
.

Remark 17 Note in these calculations we make use of the formula

nX
k=1

k3 =
1

4
n2 (n+ 1)2 .

We see then that the error from the Trapezium Rule is 1/
¡
16n2

¢
and so decreases very quickly. Amazingly

Simpson’s Rule does even better here and gets the answer spot on – the overestimates and underestimates
of area from under these quadratics actually cancel out. In general Simpson’s Rule is an improvement on
the Trapezium Rule with the two errors (associated with 2n intervals) being given by:

|ETrapezium | ≤
(b− a)3

48n2
max {|f 00 (x)| : a ≤ x ≤ b} ,

and Simpson’s Rule with 2n steps

|ESimpson | ≤
(b− a)5

2880n4
max

n¯̄̄
f (4) (x)

¯̄̄
: a ≤ x ≤ b

o
.

Note that the error is O
¡
n−4

¢
for the Simpson Rule but only O

¡
n−2

¢
for the Trapezium Rule.
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