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MQ-Sign Variants



MQ-Sign Variants in the KpqC Competition

MQ-Sign is a Uov-based signature scheme and submitted to the KpqC competition.

Round 1 Variants FV ,V FO,V Attack Type Complexity

MQ-Sign-RR random random
MQ-Sign-SR sparse random
MQ-Sign-RS random sparse
MQ-Sign-SS sparse sparse

• MQ-Sign-RR corresponds to standard Uov.
• Variants with sparse central maps F are developed to reduce key size.
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MQ-Sign Variants in the KpqC Competition

MQ-Sign is a Uov-based signature scheme and submitted to the KpqC competition.

Round 1 Variants FV ,V FO,V Attack Type Complexity

MQ-Sign-RR random random - -
MQ-Sign-SR sparse random forgery attack exp time
MQ-Sign-RS random sparse key-recovery poly time
MQ-Sign-SS sparse sparse key-recovery poly time

• MQ-Sign-RR corresponds to standard Uov.
• Variants with sparse central maps F are developed to reduce key size.
• We present attacks to every sparse variant.
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MQ-Sign Key Structure



Unbalanced Oil and Vinegar Signature

Secret/central map (easy to invert):

F = (F (1), . . . , F (m)) : Fn
q → Fm

q

Secret/central polynomials (structured):

F (k)(x1, . . . , xn) =
∑

i∈V ,j∈V
γ

(k)
ij xixj +

∑
i∈V ,j∈O

γ
(k)
ij xixj +

�������
∑

i∈O,j∈O
γ

(k)
ij xixj

Store the coefficients of the quadratic part of F (k) in an upper triangular matrix F(k)

F(k) =
(

F(k)
1 F(k)

2
0 0

)
=
(

F(k)
V F(k)

O,V
0 0

)
.

Secret linear transformation (invertible matrix):

S : Fn
q → Fn

q, where we commonly have S =
(

Iv S1

0 Im

)
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Unbalanced Oil and Vinegar Signature

Public key map (hard to invert):

P = (P(1), . . . , P(m)) : Fn
q → Fm

q

Public polynomials (seemingly random):

P(k)(x1, . . . , xn) =
∑

1≤i≤j≤n
p(k)

ij xixj

Store the coefficients of the quadratic part of P(k) in an upper triangular matrix P(k)

P(k) =
(

P(k)
1 P(k)

2
0 P(k)

4

)
The public and secret polynomials follow the equation:

P = F ◦ S

resp. P(k) = S⊤F(k)S
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Unbalanced Oil and Vinegar Signature

Sign

• Build the target value t = H(m, salt) from message m.

• Compute y = F−1(t) ∈ Fn
q, and z = S−1(y).

• The signature is given by sig = (z, salt)

Verify

• Build the target value t = H(m, salt) and evaluate t′ = P(z).

• Accept if t = t′, reject otherwise.
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MQ-Sign Modifications

MQ-Sign design principle: sparse polynomials to reduce key size

• Choose F (k)
V (x1, . . . , xn) sparse

∑
i∈V , j∈V

γ
(k)
ij xixj →

v∑
i=1

γ
(k)
i xix(i+k−1( mod v))+1

⇒ From v · (v + 1)/2 to v coefficients per polynomials.

• Choose F (k)
OV (x1, . . . , xn) sparse

∑
i∈V , j∈O

γ
(k)
ij xixj →

v∑
i=1

γ
(k)
i xix(i+k−2( mod m))+v+1.

⇒ From v · o to v coefficients per polynomials.
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MQ-Sign Modifications

Translate sparse polynomial equations to matrix visualization

F (1)
V =

v∑
i=1

γ
(1)
i xix(i mod v)+1 → F(1)

V =



0 γ
(1)
1 0 · · · 0

0 0 γ
(1)
2 · · · 0

...
...

. . .
...

0 0 0 · · · γ
(1)
v−1

γ
(1)
v 0 0 · · · 0



F (2)
V =

v∑
i=1

γ
(2)
i xix(i+1 mod v)+1 → F(2)

V =



0 0 γ
(2)
1 · · · 0

...
...

. . .
...

0 0 0 · · · γ
(2)
v−2

γ
(2)
v−1 0 0 · · · 0
0 γ

(2)
v 0 · · · 0


...
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MQ-Sign Secret Key Size

Key size reduction due to sparsely chosen central polynomials

Round 1 variants FV ,V FO,V
Secret key size

at security level I

MQ-Sign-RR random random 282 177 Bytes
MQ-Sign-SR sparse random 164 601 Bytes
MQ-Sign-RS random sparse 133 137 Bytes
MQ-Sign-SS sparse sparse 15 561 Bytes

Table: Key size of the MQ-Sign variants for security level I with parameters (q, v , m) = (28, 72, 46)
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Polynomial Time Key-Recovery
Attack



Derive Linear Equations from Key Equation

The key equation P = F ◦ S translates to the matrix equations P(k) = S⊤F(k)S,

i.e.(
P(k)

1 P(k)
2

0 P(k)
4

)
= Upper

((
I 0

S⊤
1 I

)(
F(k)

1 F(k)
2

0 0

)(
I S1

0 I

))

=
(

F(k)
1 (F(k)

1 + F(k)⊤
1 )S1 + F(k)

2
0 Upper (S⊤

1 F(k)
1 S1 + S⊤

1 F(k)
2 )

)
.

From the two upper blocks we obtain the equations

P(k)
1 = F(k)

1 and P(k)
2 = (P(k)

1 + P(k)⊤
1 )S1 + F(k)

2 .

⇒ System of linear equations in the entries of the secret S1

⇒ But highly underdetermined, due to the secret coefficients in F(k)
2
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Efficient Key-Recovery

In MQ-Sign-RS and MQ-Sign-SS the coefficients in F(k)
2 = F(k)

O,V are chosen sparsely. This
removes unknown variables from the system

P(k)
2 = (P(k)

1 + P(k)⊤
1 )S1 + F(k)

2 .


p(k)

1,v+1 · · · p(k)
1,v+m

...
...

p(k)
v ,v+1 · · · p(k)

v ,v+m


︸ ︷︷ ︸

public

=


p,(k)

1,1 · · · p,(k)
1,v

...
...

p,(k)
v ,1 · · · p,(k)

v ,v


︸ ︷︷ ︸

public

s11 · · · s1m
...

...
sv1 · · · svm


︸ ︷︷ ︸

secret

+



0 γ
(k)
1 · · · 0

...
...

. . .
...

0 0 · · · γ
(k)
m−1

γ
(k)
m 0 · · · 0
...

. . . · · · 0
0 0 · · · 0


︸ ︷︷ ︸

secret, but known structure
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Efficient Key-Recovery

In MQ-Sign-RS and MQ-Sign-SS the coefficients in F(k)
2 = F(k)
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removes unknown variables from the system
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=
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...
...

p,(k)
v ,1 · · · p,(k)

v ,v
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public

s11 · · · s1m
...

...
sv1 · · · svm
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secret

+
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Attack Summary

Key-Recovery Attack Summary:

• Compute secret key (F , S) directly from public key P, no signing-oracle needed.

• Works in seconds for all security levels.

• Ikematsu et al.1 generalized this attack to arbitrary S.

• Together, this led to the removal of the variants MQ-Sign-RS and MQ-Sign-SS.

1Ikematsu et al. A security analysis on MQ-Sign. In International Conference on Information Security
Applications, 2023
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Forgery Attack with Reduced
Complexity



Forgery Attack on MQ-Sign SR

Given: a target value t = H(d) ∈ Fm
q

Find: a signature z ∈ Fn
q, such that P(z) = t is fulfilled, i.e.

(zv , zo)
(

P(k)
1 P(k)

2
0 P(k)

4

)(
zv

zo

)
= zv P(k)

1 zv + zv P(k)
2 zo + zoP(k)

4 zo = tk

has to hold for all k ∈ {1, . . . , m}.

Recall: the submatrices P(k)
1 = F(k)

1 are chosen sparse in MQ-Sign-SR

First: eliminate the non-sparse submatrices P(k)
2 and P(k)

4 by fixing zo randomly, which gives

zv P(k)
1 zv + lin(zv ) =

v∑
i=1

αk
i ziz(i+k−1( mod v))+1 + lin(zv ) = tk .

Key observation: the m
2 equations from polynomials with odd index k are bilinear in the sets

zodd = {z1, z3, . . . , zv−1} and zeven = {z2, z4, . . . , zv }
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Attack Strategy

⇒ Split the m equations in m/2 bilinear and m/2 quadratic equations.

⇒ Split the v variables into zodd = {z1, z3, . . . , zv−1} and zeven = {z2, z4, . . . , zv }.

Step 1: Enumerate zodd

• Randomly guess the v
2 variables in zodd

• Get a v−m
2 -dimensional linear solution space for zeven in the m

2 bilinear equations
• Problem: will most likely not yield a solution to the remaining m

2 quadratic (non-bilinear)
equations (probability ≈ q−( v

2 −(v−m))) → repeat until Step 2 finds a solution

Step 2: Solve for zeven

• Try to find an assignment to zeven that also validate the remaining m
2 equations

• I.e. solve a quadratic system of m
2 equations in v−m

2 variables

12
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Step 2: Solve for zeven

• Try to find an assignment to zeven that also validate the remaining m
2 equations

• I.e. solve a quadratic system of m
2 equations in v−m

2 variables
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Complexity of Forgery Attack on MQ-Sign SR

Security level Parameters (q, v , m) Cenum(q, v
2 −(v−m)) CMQ(q, v−m

2 , m
2 ) Complexity

I (28, 72, 46) 280 231 2111

III (28, 112, 72) 2128 242 2170

V (28, 148, 96) 2176 252 2228

Table: Theoretical complexity of the forgery attack.

• Cenum(q, v
2 −(v−m)) denote the cost of the enumeration.

• CMQ(q, v−m
2 , m

2 ) denote the cost of solving the remaining quadratic system .

⇒ We implemented the system solving step to validate the complexity estimates.

13



Complexity of Forgery Attack on MQ-Sign SR

Security level Parameters (q, v , m) Cenum(q, v
2 −(v−m)) CMQ(q, v−m

2 , m
2 ) Complexity

I (28, 72, 46) 280 231 2111

III (28, 112, 72) 2128 242 2170

V (28, 148, 96) 2176 252 2228

Table: Theoretical complexity of the forgery attack.

• Cenum(q, v
2 −(v−m)) denote the cost of the enumeration.

• CMQ(q, v−m
2 , m

2 ) denote the cost of solving the remaining quadratic system .

⇒ We implemented the system solving step to validate the complexity estimates.

13



Impact and Open Research
Questions



MQ-Sign in Competition Round 2

MQ-Sign advanced to the KpqC Competition Round 2

Round 1 Variants Attack Type Complexity Round 2 Variants

MQ-Sign-RR - - MQ-Sign-RR
MQ-Sign-SR direct attack exp time MQ-Sign-LR2

MQ-Sign-RS key-recovery poly time ✗

MQ-Sign-SS key-recovery poly time ✗

⇒ The presented key-recovery attack - together with its generalization by Ikematsu et al. - led
to the removal of the last two variants

⇒ Possible future work: cryptanalysis of MQ-Sign-LR

2another sparse MQ-Sign variant with different structure
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The End

Takeaways

• Sparse polynomials can introduce vulnerabilities.
• Attacks do not exploit a general weakness, sparse polynomials are still interesting.
• It seems preferable to choose public polynomials sparse, instead of secret polynomials.

Questions?
Contact: thomas.aulbach@ur.de

Aulbach, Samardjiska, Trimoska:
Practical Key-Recovery on MQ-Sign and More
https://ia.cr/2023/432
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