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MQ-Sign Variants in the KpqC Competition

M@Q-SIGN is a UoV-based signature scheme and submitted to the KpqC competition.
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MQ-SiGN-RR random  random
MQ-S1GN-SR sparse random
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MQ-Sign Variants in the KpqC Competition

M@Q-S1GN is a UoV-based signature scheme and submitted to the KpqC competition.

Round 1 Variants Fv,v Fo,v Attack Type Complexity
MQ-SiGN-RR random  random - -
MQ-S1GN-SR sparse random  forgery attack exp time
MQ-S1GN-RS random sparse key-recovery poly time
MQ-SIGN-SS sparse sparse key-recovery poly time

= MQ-SIGN-RR corresponds to standard Uov.

= Variants with sparse central maps F are developed to reduce key size.

= We present attacks to every sparse variant.
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Unbalanced Oil and Vinegar Signature

Secret/central map (easy to invert):
F=FW, L Fmy . F > FY
Secret/central polynomials (structured):

f(k)(Xl,---7Xn) = Z J X,XJ—|- Z XIXJ /‘(‘k) %G

eV, jev ieV.,jeo JEO

Store the coefficients of the quadratic part of F% in an upper triangular matrix F()

k k k k
e _ (Fi) B _(FY Foy)
0 0 0 0

Secret linear transformation (invertible matrix):

|
S : Fy — 3, where we commonly have S = ( N Sl)
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Unbalanced Oil and Vinegar Signature

Public key map (hard to invert):
1 m)y .
P=PW,. . P F - FT
Public polynomials (seemingly random):

PO (xq,. .. xy) = Z p,g.k)x,-xj

1<i<j<n

Store the coefficients of the quadratic part of P*) in an upper triangular matrix P(®)

(k)  p(k)
P(k) _ Pl P2k
0 PY

The public and secret polynomials follow the equation:

P=FoS
resp. PK) = §TFg



Unbalanced Oil and Vinegar Signature

Sign

= Build the target value t = H(m, salt) from message m.
= Computey = F'(t) € Fy, and z =S~ *(y).

= The signature is given by sig = (z, salt)



Unbalanced Oil and Vinegar Signature

Sign

= Build the target value t = H(m, salt) from message m.
= Computey = F'(t) € Fy, and z =S~ *(y).

= The signature is given by sig = (z, salt)

Verify

= Build the target value t = H(m, salt) and evaluate t' = P(2).

= Accept if t = t/, reject otherwise.
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MQ-Sign design principle: sparse polynomials to reduce key size
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Translate sparse polynomial equations to matrix visualization
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MQ-Sign Modifications

Translate sparse polynomial equations to matrix visualization

F0 o 0
. 0 D 0
]:\(/1) = Z“/,-(I)Xix(i mod v)+1 F(\}) =
- 0 0 0 75”1
W00 0
0 0 @ 0
ZV Xirimod a1 = FP=| ¢ 0 0 - 75 ),
W0 0 o0
0o 4P o 0




MQ-Sign Secret Key Size

Key size reduction due to sparsely chosen central polynomials

Secret key size

Round 1 variants Fv.v Fov .

’ ’ at security level |
MQ-SieN-RR random  random 282 177 Bytes
MQ-SiGN-SR sparse random 164 601 Bytes
MQ-Si1GN-RS random sparse 133 137 Bytes
MQ-SIGN-SS sparse sparse 15 561 Bytes

Table: Key size of the MQ-Sign variants for security level | with parameters (q, v, m) = (28,72, 46)



Polynomial Time Key-Recovery
Attack
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Derive Linear Equations from Key Equation

The key equation P = F o S translates to the matrix equations PK) = STF®S je.

p{ p{ vomer[ [V 0 FO FRN (1S,

o P FPPAsr 1/lo o )lo 1
_(FF (R + RS, + R

0  Upper (SlTng)Sl + SlTF(zk)) '

From the two upper blocks we obtain the equations

PH —F and PP = (PP +PMT)s, +F.

=- System of linear equations in the entries of the secret S;

= But highly underdetermined, due to the secret coefficients in ng)



Efficient Key-Recovery
(k)

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in ng) = Fg v are chosen sparsely. This

removes unknown variables from the system
P = (P + PUITHs, + FY.
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Efficient Key-Recovery
(k)

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in ng) = Fg v are chosen sparsely. This

removes unknown variables from the system
P = (P + PUITHs, + FY.

0 AW 0

K K J(k J(k : : . :
p](_,\erl e p](_,\2+m pl(,l) o pl(,v) S11 *** Sim ()

: g - : g g N 0 0 - Tm-1
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secret, but known structure

= Collect linear equations for all k € {1,..., m} polynomials.

= Obtain system of mv(m — 1) equations in vm variables (can be divided into subsystems).
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Efficient Key-Recovery
(k)

In MQ-SIGN-RS and MQ-SIGN-SS the coefficients in ng) = Fg v are chosen sparsely. This

removes unknown variables from the system
P = (P + PUITHs, + FY.

0 AW 0
() (k) (k) (k) : : : :
Pivii " Piyvim P11 0 Piy Sit ccc Sim ()
. ) . . ) . . 0 o .- Vo1
: : = : : : : k
) () ") () w0 L
pv,v+1 e pv,v+m p;,l o p;,v Svi *** Sym : . .
public public secret 0 0 . 0
secret, but known structure
= Collect linear equations for all k € {1,..., m} polynomials.
= Obtain system of mv(m — 1) equations in vm variables (can be divided into subsystems).
9

= Once S is known, receive all central polynomials efficiently from P(k) = STF(k)S,
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Attack Summary

Key-Recovery Attack Summary:

= Compute secret key (F,S) directly from public key P, no signing-oracle needed.
= Works in seconds for all security levels.
= lkematsu et al.! generalized this attack to arbitrary S.

= Together, this led to the removal of the variants M Q-SIGN-RS and MQ-SIGN-SS.

Hkematsu et al. A security analysis on MQ-Sign. In International Conference on Information Security
Applications, 2023
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Forgery Attack with Reduced
Complexity




Forgery Attack on MQ-Sign SR

Given: a target value t = H(d) €
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0 PP/ \z
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Forgery Attack on MQ-Sign SR

Given: a target value t = H(d) €
Find: a signature z € F_, such that P(z) = t is fulfilled, i.e.
RPN k K K
(ZV,ZO) < (1] szlk) . = ZVP(1 )zv + Zng )Zo + ZOF'S1 )Zo = i
has to hold for all k € {1,..., m}.
Recall: the submatrices ng) = F(lk) are chosen sparse in MQ-SIGN-SR
First: eliminate the non-sparse submatrices ng) and ng) by fixing z, randomly, which gives
sz(lk)zV +lin(z,) = Z affz,-z(,-H,l( mod v))+1 T lin(zy) = tx.
i=1

Key observation: the 7 equations from polynomials with odd index k are bilinear in the sets

Zodd = {217237 LR ,ZV,].} and Zeven = {227 Zhy o aZv}
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12



Attack Strategy

= Split the m equations in m/2 bilinear and m/2 quadratic equations.

= Split the v variables into zyyy = {z1,23,...,2,—1} and Zeyen = {22, 24, ..., 2, }.

12



Attack Strategy

= Split the m equations in m/2 bilinear and m/2 quadratic equations.

= Split the v variables into zyyy = {z1,23,...,2,—1} and Zeyen = {22, 24, ..., 2, }.

Step 1: Enumerate z,q4

12



Attack Strategy

= Split the m equations in m/2 bilinear and m/2 quadratic equations.

= Split the v variables into zyyy = {z1,23,...,2,—1} and Zeyen = {22, 24, ..., 2, }.

Step 1: Enumerate z,q4

= Randomly guess the % variables in z,qq4

12



Attack Strategy

= Split the m equations in m/2 bilinear and m/2 quadratic equations.

= Split the v variables into zyyy = {z1,23,...,2,—1} and Zeyen = {22, 24, ..., 2, }.

Step 1: Enumerate z,q4

= Randomly guess the % variables in z,qq4

. =™ _dimensional linear solution P Zay [ 2 bilinear equation
Get a “5™-dimensional linear solution space fo the 7 bilinear equations

12



Attack Strategy

= Split the m equations in m/2 bilinear and m/2 quadratic equations.

= Split the v variables into zyyy = {z1,23,...,2,—1} and Zeyen = {22, 24, ..., 2, }.

Step 1: Enumerate z,q4

= Randomly guess the ¥ 5 variables in z,qq4

= Get a &5 ’”-d|menS|onaI linear solution space for ze, in the 7 bilinear equations

= Problem: will most likely not yield a solution to the remaining 3 quadratic (non-bilinear)
equations (probability ~ g=(3=(v=m)) — repeat until Step 2 flnds a solution

12



Attack Strategy

= Split the m equations in m/2 bilinear and m/2 quadratic equations.

= Split the v variables into zyyy = {z1,23,...,2,—1} and Zeyen = {22, 24, ..., 2, }.

Step 1: Enumerate z,q4

= Randomly guess the ¥ 5 variables in z,qq4

= Get a &5 ’”-d|menS|onaI linear solution space for ze, in the 7 bilinear equations

= Problem: will most likely not yield a solution to the remaining 3 quadratic (non-bilinear)
equations (probability ~ g=(3=(v=m)) — repeat until Step 2 flnds a solution

Step 2: Solve for z.e,

12



Attack Strategy

= Split the m equations in m/2 bilinear and m/2 quadratic equations.

= Split the v variables into zyyy = {z1,23,...,2,—1} and Zeyen = {22, 24, ..., 2, }.

Step 1: Enumerate z,q4

= Randomly guess the ¥ 5 variables in z,qq4

= Get a &5 ’”-d|menS|onaI linear solution space for ze, in the 7 bilinear equations

= Problem: will most likely not yield a solution to the remaining 3 quadratic (non-bilinear)
equations (probability ~ g=(3=(v=m)) — repeat until Step 2 flnds a solution

Step 2: Solve for z.e,

= Try to find an assignment to ze,e, that also validate the remaining 3 equations

12



Attack Strategy

= Split the m equations in m/2 bilinear and m/2 quadratic equations.

= Split the v variables into zyyy = {z1,23,...,2,—1} and Zeyen = {22, 24, ..., 2, }.

Step 1: Enumerate z,q4

= Randomly guess the ¥ 5 variables in z,qq4

= Get a &5 ’”-d|menS|onaI linear solution space for ze, in the 7 bilinear equations

= Problem: will most likely not yield a solution to the remaining 3 quadratic (non-bilinear)
equations (probability ~ g=(3=(v=m)) — repeat until Step 2 flnds a solution

Step 2: Solve for z..,
= Try to find an assignment to ze,e, that also validate the remaining % equations

v—m

» l.e. solve a quadratic system of 7 equations in *5™ variables

12



Complexity of Forgery Attack on MQ-Sign SR

Security level | Parameters (g, v, m) Convn(q, % —(v—m)) CMQ(% n ) Complexity
| (28,72, 46) 7 i p
1l (28,112, 72) 2128 242 2170
% (28,148, 96) i 252 0228

Table: Theoretical complexity of the forgery attack.

= Cixum(g,§—(v—m)) denote the cost of the enumeration.

CMQ@%,%) denote the cost of solving the remaining quadratic system .
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| (28,72, 46) 7 i p
1l (28,112, 72) 2128 242 2170
% (28,148, 96) i 252 0228

Table: Theoretical complexity of the forgery attack.

= Cixum(g,§—(v—m)) denote the cost of the enumeration.

CMQ@%,%) denote the cost of solving the remaining quadratic system .

= We implemented the system solving step to validate the complexity estimates.
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Impact and Open Research
Questions




MQ-Sign in Competition Round 2

M@Q-SI1GN advanced to the KpgC Competition Round 2

Round 1 Variants Attack Type Complexity Round 2 Variants

MQ-SiaN-RR - - MQ-SieN-RR
MQ-SI1GN-SR direct attack exp time MQ-SI1GN-LR?
MQ-S1GN-RS key-recovery poly time X
MQ-SIGN-SS key-recovery poly time X

2another sparse MQ-SIGN variant with different structure
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M@Q-SI1GN advanced to the KpgC Competition Round 2

Round 1 Variants Attack Type Complexity Round 2 Variants

MQ-SiaN-RR - - MQ-SieN-RR
MQ-SI1GN-SR direct attack exp time MQ-SI1GN-LR?
MQ-S1GN-RS key-recovery poly time X
MQ-SIGN-SS key-recovery poly time X

= The presented key-recovery attack - together with its generalization by Ikematsu et al. - led
to the removal of the last two variants

= Possible future work: cryptanalysis of MQ-S1GN-LR

2another sparse MQ-SIGN variant with different structure
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The End

Takeaways

= Sparse polynomials can introduce vulnerabilities.
= Attacks do not exploit a general weakness, sparse polynomials are still interesting.

= |t seems preferable to choose public polynomials sparse, instead of secret polynomials.

Questions?
Contact: thomas.aulbach@ur.de

Aulbach, Samardjiska, Trimoska: E E
Practical Key-Recovery on MQ-Sign and More E'I:'-' C
https://ia.cr/2023/432 'El'

E:r'.-.... -
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