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Comparison with Recent Work Ssoasoune
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Not this work?,? This work
Reduction to quantum-easy prob- | Reduction to quantum-hard-ish
lems problem

Works for some finite groups but | Works for any finite semigroup
not for semigroups

Ymran and lvanyos 2023.
2Mendelsohn, Dable-Heath, and Ling 2023.
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| 2014-2021: design/analysis of different versions of an SDLP-based cryptosystem® |

’ Summer 2022: this work, first dedicated analysis of SDLP ‘

| Spring 2023: applications of techniques in this paper to DSS* |

| Christmas 2023: faster SDLP methods in some finite groups® |

3Habeeb, Kahrobaei, Koupparis, and Shpilrain 2014.
“B., Kahrobaei, Perret, and Shahandashti 2023.
5|mran and Ivanyos 2023; Mendelsohn, Dable-Heath, and Ling 2023.
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Semidirect Product

Let G be a finite semigroup and End(G) its semigroup of
endomorphisms. We define G x End(G) to be the semigroup of
pairs in G x End(G) equipped with the following multiplication:

(g,0)(h,v) := (g¢(h), ¢ 0 )
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Semidirect Exponentiation

Fix (g,¢) € G x End(G). Define s; 4 : N — G to be the group
element such that

(&, 0)" = (sg.6(x), ¢%)

We have seen that

sg.0(x) = go(g)...0" (g)

SDLP

Fix G x End(G) and a pair (g, ¢). Suppose we are given sg 4(x)
for some x € N. The Semidirect Discrete Logarithm Problem is to
recover x.
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0 2 1 11 1
Let G=Ms(Z3), A=|0 2 1|,B=|1 0 2|, ¢sg(M)=BMB™*.
1 10 0 0 2

Then
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(sgo(x +¥),0*™) = (g,6)" = (. 9)*(g.6)
= (5g.6(x), @) (sg.0(y), )
= (sg.0(x)¢* (sg.6 (1)), &)

SO Sg. (X + ¥) = Sg.4(X)®*(sg,6(y)). We can add in the argument
of Sg.¢-
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(sgo(x +¥),0*™) = (g,6)" = (. 9)*(g.6)
= (5g.6(x), @) (sg.0(y), )
= (sg.0(x)¢* (sg.6 (1)), &)

SO Sg. (X + ¥) = Sg.4(X)®*(sg,6(y)). We can add in the argument
of Sg.¢-

Let Xp ¢ = {sSg,4(i) : i € N}, and define * : N x X, 4 — Xz 4 by

X * Sz 4(¥) = 5g.4(x)0*(5g,6(¥))

We have x * sz 4(y) = sg.¢(x + ).
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Set Xg7¢ = {Sg7¢(i) RS N}

sg,0(1) Sg,6(2) sg,6(n)
1 1x 1%
® © 1x
1x
Sg,o(n+r—1) sg.6(n+1)
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Set Xg7¢ = {Sg@(i) RS N}

sg,¢(1) sg,6(2) sg »(n)
1« 1x

Sg,o(n+r—1) sg.6(n+1)

1* 1%

Terminology

We call n the index, r the period, {g, ..., s;,4(n — 1)} the tail, and
{sg,6(n), ..., Sg,6(n+ r — 1)} the cycle.
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Finite Group Action

Let G be a finite group, X be a finite set and * be a function
% G x X — X. The tuple (G, X, ) is a group action if
lg *x = x for each x € X
(gh) *x = g* (hxx) foreach g,h € G, xe X

Vectorisation® /Group Action DLog

Let (G, X, x) be a group action. Given x,y € X, the vectorisation
problem is to find a g (if one exists) such that g x = y.

5Couveignes 2006.
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Theorem [B., Kahrobaei, Perret, Shahandashti]

Let G be a finite semigroup and consider the semigroup

G x End(G). Fix a pair (g,¢) € G x End(G), and let Cz 4 denote
the corresponding cycle. The tuple (Z;,Cgz 4, ®) is a free, transitive
group action, where r, the period associated to (g, ¢), is |Cg,4|-
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Theorem [B., Kahrobaei, Perret, Shahandashti]

Let G be a finite semigroup and consider the semigroup

G x End(G). Fix a pair (g,¢) € G x End(G), and let Cz 4 denote
the corresponding cycle. The tuple (Z;,Cgz 4, ®) is a free, transitive
group action, where r, the period associated to (g, ¢), is |Cg,4|-

Theorem [B., Kahrobaei, Perret, Shahandashti]

There is a fast quantum reduction from SDLP w.r.t (g,¢) to a
vectorisation problem, and therefore quantum algorithms for SDLP
of quantum complexity 29(V1°87) "where r is the period associated

to (g, ¢).
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Well-known that the Vectorisation Problem reduces to dihedral
hidden subgroup problem.”

Dihedral hidden subgroup problem admits (a) quantum
algorithm with complexity 2°(V1egn) for D, , 8

Reduction of Semigroup DLog to a DLog problem has to
address a similar structure to us.?

"Childs, Jao, and Soukharev 2014.
8Kuperberg 2005.
9Childs and Ivanyos 2014
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sg,6(1)  sg,06(2) sg,¢(X) Sg,6(n)
1x 1x 1x 1x 1x
e { @ e 1x
1x
Sg.p(n+r—1) Sgo(n+1)
1x 1x
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sg,0(1)  Sg,0(2) sg,(n)
1x 1x 1x
o —0— - 1%
1x
1« r/]_*
Sg,6(x)
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Suppose we are given n, r.
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Suppose we are given n, r.
Notice that r x sz 4(X) = Sg.4(X) <= Sg.4(x) € Cg

r* Sg.o(x) = sg,6(x)?

No
Yes
find smallest k s.t. obtain k by giving
rx(kxsgg) Sg,6(N); Sg,6(x)
to Vectorisation Problem
oracle
return n — k return n + k
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Given r compute n as the smallest integer such that
r sgg(n) = sge(n).
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Given r compute n as the smallest integer such that

M N sg0 () ——

Observe

second register

S —

1 .
—— = 2o o+

Possible failure

QFT, classical

post-processing
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One can solve SDLP for (g, ¢) in quantum time 20(Viogr)
where r is a function of g, ¢ - not much known about its size.

In the generic case this remains state-of-the-art; possible that
specific semigroups would yield faster results

Fast classical methods of computing n, r might give us
interesting crypto.
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Further Reading N T

Fast SDLP now resolved for all* finite groups.

https://eprint.iacr.org/2024 /905

More on group-based cryptography:

http://aimpl.org/postquantgroup/

*up to constructive recognition.
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