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Factoring and discrete logarithm problems

Integer Factoring Problem (IFP) Discrete Logarithm Problem (DLP)
> Given an integer N, find non-trivial » Given a generator g of a cyclic
factors p, g such that N = pq. group and x = g¢, find e.

> Historically the basis for virtually all widely deployed asymmetric cryptography.
> Algorithms that solve the IFP can often be adapted to solve the DLP, and vice versa.

» In this presentation, we consider the DLP in cyclic subgroups of Zj;.



Quantum algorithms for the IFP and DLP

Algorithm Problem | #Multiplications #Runs Space usage
[Shor94] IFP 0(n) 0(1) 0(n)
[Shor94] DLP 0(n) 0(1) 0(n)

> The circuit size is given by the number of multiplications modulo n-bit integers N.
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[Regev23] IFP 0(v/n) 0(v/n) 0(n3/?)
[Regev23] with [RV23] IFP 0(v/n) 0(+v/n) 0(n)
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Quantum algorithms for the IFP and DLP

Algorithm Problem | #Multiplications #Runs Space usage
[Shor94] IFP 0(n) 0(1) 0(n)
[Shor94] DLP 0(n) 0(1) 0(n)
[Regev23] IFP 0(v/n) 0(v/n) 0(n3/?)
[Regev23] with [RV23] IFP 0(v/n) 0(+v/n) 0(n)

Our work DLP 0(v/n) 0(+v/n) 0(n)

> The circuit size is given by the number of multiplications modulo n-bit integers N.
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The quantum circuit
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> The circuits for all of the aforementioned algorithms follow the same design pattern.



The quantum circuit
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> By letting the a; be small integers, and re-arranging the order of the multiplications,
[Regev23] is able to reduce the circuit size at the expense of using more space.
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Shor’s factoring algorithm — one-dimensional period finding
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» Factors by finding the period of f(z) = a“ mod N for random a.

Example: f(z) = 737 mod 667
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Regev’s factoring algorithm — d-dimensional period finding

> Considers the function
d
fz1,...,24) = Hajzf mod N,
j=1
the period of which forms a lattice
L= {(Z1,...,Zd) | f(Zq,...,Zd) = 1}

> Under a heuristic assumption, it suffices
to perform = d runs to factor N.

0 20 40
Example: f(x,y) = 49” mod 667
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2. Computing discrete logarithms



Our extension to computing discrete logarithms

The quantum algorithm

» Each runs of the quantum algorithm gives information on the periodicity of

d
Z Z Zj
f(z1,...,2Z440) = x“t1g“a+2 | | a; mod N
j=1

where x = g mod N and the a; are small integers.

» Essentially the same algorithm as in [Regev23] but g and x need not be small.
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Our extension to computing discrete logarithms

The classical post-processing

Given the outputs from O(d) runs, the post-processing recovers vectors in the lattice

d
Z Z Zj
L= (z1,...,2q12) | x?¥t1g*o+2 | | aj’ mod N =1
j=1

Under a new heuristic assumption, the vectors recovered yield a basis for L.

Given a basis for £, we can easily recover e by finding the vector

(0,...,0,1,—e) € L.



Our new heuristic assumption

» QOur new assumption is stronger than the assumption made in [Regev23].
» Both assumptions are essentially that small primes behave as random elements in Zj,.

» [Pilatte24] recently proved a variant of our assumption with worse parameters.
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Other extensions

More efficient factoring

» Under our new heuristic assumption, we can recover a basis for the lattice

d
L= (z1,...,25) | [[&’ modN =1
j=1

Given a basis for £ with the a; small primes, we can efficiently factor N completely.

» In [Regev23], the a; must be squares. In our algorithm, we can avoid the squaring.
» Thus, we can use g; of half the bit length, which improves the efficiency.
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3. Robustness to errors



On the need for robustness

» Quantum computers as currently envisaged may fail to correctly execute the circuit.

» [Regev23] requires ©(y/n) good runs, so only a tiny failure probability is acceptable.
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Two approaches to robustness

Ragavan and Vaikuntanathan

» The post-processing succeeds » [RV23] develops a method
even if some runs are bad. to filter out bad runs.



https://doi.org/10.48550/arXiv.2310.00899

Further details on the two approaches

Requirements

New heuristic assumption.

R3]

Special property for distribution
of outputs from bad runs.

Efficiency

Somewhat larger parameters.

Significantly larger parameters.

Error tolerance

Arbitrary constant percentage.

Constant percentage.

> Natural that we achieve better efficiency since we rely on a heuristic analysis.
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Quantifying the robustness through simulations
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» [EG24sim] samples the distribution induced by the quantum algorithm.
> Motivates our new assumption and allows us to estimate parameter requirements.

» Simulator only efficient for classically tractable special-form problem instances.
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Regev with space savings vs. existing variations of Shor
From our recent cost comparison [EG24] (arXiv:2405.14381)

Per-run advantage of existing variations of Shor
Problem size
Algorithm Problem 2048 3072 4096 6144 8192

[EH17, E20] RSA IFP 316 246 204 158 133
[E19] General DLP | 1.71 1.31  1.08 0.83 0.69
[EH17,E20]  Short DLP 126 131 121 122 121
[E19] SchnorrDLP | 13.6 140 131 131 13.0

The advantage, defined as (cost of Regev) / (cost of Shor), in a cost model biased in favor of Regev.

» Performance for cryptographically relevant problem instances is of key interest.
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Conclusion

Open questions

» Optimize Regev’s algorithm to make it more competitive in practice.
» Provide optimizations for the special cases of short DLP and DLP in Schnorr groups.

» Extend the algorithm to the elliptic curve DLP.



Conclusion

Open questions

» Optimize Regev’s algorithm to make it more competitive in practice.
» Provide optimizations for the special cases of short DLP and DLP in Schnorr groups.

> Extend the algorithm to the elliptic curve DLP.

Summary of our contribution

> We have extended Regev’s factoring algorithm to compute discrete logarithms.
» We have provided slightly more efficient variants for factoring completely.

» We have analyzed and argued for the robustness of the post-processing.
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