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The 1-dimensional picture



Elliptic curves

An Elliptic Curve E over Fpk
is defined by an equation

E : y2 = x3 + ax + b,

where 4a3 + 27b2 ̸= 0.

Points of E form an
additive group.

P

Q

P + Q

• Can compute P+ Q for points P,Q ∈ E(Fpk).
• Can compute m · P for a point P ∈ E(Fpk) and m ∈ Z.

⇒ One-way function: m 7→ m · P for some fixed P ∈ E(Fpk).

" not a post-quantum one-way function

2
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Isogenies

ϕ

2-isogeny

An isogeny ϕ : E→ E′ is a (special)
map between elliptic curves.

An N-isogeny is an isogeny
ϕ : E→ E′ with kernel K ≃ Z/NZ.
• Complexity: O(N) (Vélu) or
Õ(
√
N) (
√

élu)

Smooth-degree isogenies

• Composition of small degree
isogenies

• E.g. for N = 2k in time
O(k log(k)).

2-isogeny
kernel ⟨2k−1P⟩

2k-isogeny

3
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Õ(
√
N) (
√
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Isogeny graphs

• Vertices: elliptic curves E .
• Edges: ℓ-isogenies with ℓ ∈ {ℓ1, . . . , ℓn} E — E’ .

Two typical graphs

supersingular curves over Fp2

ℓ ∈ {2, 3}, p = 431
supersingular curves over Fp

ℓ ∈ {3, 5, 7}, p = 419.
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Isogenies as one-way functions

Setup Fix an elliptic curve E ,
in an {ℓ1, . . . , ℓn}-isogeny graph with efficient navigation.

Isogeny one-way function

Input
bit-string

⇝
path in the graph
E —. . .— E’ ⇝

Output
E′

No polynomial quantum attacks are known.
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Key exchange based on isogenies

Setup
Fix a starting
curve E .

Secret paths
Alice:

— — —. . .—
Bob:

— — —. . .—

Exchange
Alice EA−→ Bob

EB←−

Shared key
repeating∗ the path,
→ EAB

E

EA

EB

EAB

(∗) It is not obvious how to repeat a path with a different starting vertex,
so that the paths commute.
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Isogeny-based primitives in dimension 1

1997
Couveignes Hard homogeneous space

Group-action based cryptography
→ DH key exchange with isogenies.

2006
Rostovtsev, Stolbunov

Public-key cryptosystem based on
isogenies
Independent discovery of Cou-
veigne’s (unpublished) ideas.

2009
Charles, Goren, Lauter

CGL hash function Cryptographic
hash functions from expander
graphs.

2011
de Feo, Jao

SIDH
Towards quantum-resistant cryp-
tosystems from supersingular elliptic
curve isogenies

2018,
Castryck, Lange, Martindale,

Panny, Renes

CSIDH:
an efficient post-quantum commuta-
tive group action

2020
de Feo, Kohel, Leroux, Petit, Wesolowski

SQISign:
compact post-quantum signatures
from quaternions and isogenies 7



The 2-dimensional picture



What are 2-dimensional elliptic curves ?
An elliptic curve
• is a 1-dimensional variety

E : Y2Z = X3 + aXZ2 + bZ3 ⊂ P2.

• equipped with a group structure.

It is a principally polarized abelian variety (p.p.a.v.) of dimension 1.

How to construct a p.p.a.v. of dimension 2?

1 + 1 = 2:
product of elliptic curves

E1 ×E2

x
y

z
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2 = 2: Irreducible p.p.a.v of dimension 2

Genus-2 curve C : y2 = f (x), with deg(f ) ∈ {5, 6}.

y2 = x(x2 − 1)(x2 − 4)

"
Points on C

do not form
a

group.

The Jacobian of C, Jac(C), is a principally polarized abelian surface.

• Complicated as a variety (e.g.
defined by 72 polynomials in P15).

• Easy description of D ∈ Jac(C):
D = (P,Q) with P,Q points of C.

x
y

z
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Isogenies in dimension 2

dimension 1 dimension 2
N-isogeny ϕ : E→ E′ surjective
morphism with ker(ϕ) ≃ Z/NZ.

(N,N)-isogeny surjective
morphism ϕ : A→ A′ has

isotropic1 ker(ϕ) ≃ (Z/NZ)2

3-isogeny

x
y

z

1

2

3

4

x
y

z

x
y

z

x
y

z

all isogenies are generic

4 isogeny types:

1. generic
2. splitting

3. gluing
4. product

1Weil pairing is trivial. 10
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Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces
E× E′

Jac(C)
Edges: (ℓ, ℓ)-isogenies with
ℓ ∈ {ℓ1, . . . , ℓn}

– –
– –

Key features
• # ≫ # ;
• For small ℓ, we can navigate

efficiently. a

• Finding a path
– –. . . – –

is hard

aMore details on Slide 15

(vey inaccurate) sketch of
an isogeny graph

ℓ = 2, p = 53
generically, the graph is 15-regular

(for ℓ = 2)

11
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Generalization of 1-dimensional crypto to dimension 2

2018
Takashima

Efficient algorithms for isogeny se-
quences and their cryptographic
applications
First generalization of the CGL hash
function

2019
Flynn, Ti

Genus two isogeny cryptography
First generalization of the SIDH key
exchange (G2SIDH)

2020
Castryck,
Decru, Smith

Hash functions from superspecial
genus-2 curves using Richelot isoge-
nies
Repair of Takashima’s hash function

2021,
Kunzweiler, Ti,
Weitkämper

Secret keys in genus-2 SIDH
Improvement of the G2SIDH protocol

Isogeny-based primitives in dimen-
sion 1

1997
Couveignes CRS key exchange

2006
Rostovtsev, Stolbunov CRS key exchange

2009
Charles, Goren, LauterCGL hash function

2011
de Feo, Jao

SIDH key ex-
change

2018,
Castryck, Lange, Martindale,
Panny, Renes

CSIDH key ex-
change

2020
de Feo, Kohel, Leroux, Petit, WesolowskiSQISign

open problem

12
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Dimension 2 meets dimension 1



Kani’s Lemma (1997)

Isogeny diamond
(dimension 1)

E

EA

EB

EAB

fA

fB

dA-isogeny fA and dB-isogeny fB

⇔

Product isogeny
(dimension 2)

E× EAB EA × EB

F

(dA + dB,dA + dB)-
isogeny F

dA + dB interpolation data of fA, fB ⇒ kernel of F

13



The attacks on Supersingular Isogeny Diffie-Hellman (SIDH)

Kani’s lemma serves as a key ingredient for attacking the isogeny
one-way function with torsion point information.

Setting Given E, EA and interpolation data P,Q, fA(P), fA(Q) with
⟨P,Q⟩ = E[dA + dB], find fA.

Idea (Castryck-Decru, Maino-Martindale-Panny-Pope-Wesolowski, Robert)

1. Construct fB to obtain an isogeny diamond.
2. Use Kani to obtain a product isogeny F.
3. Recover fA from F.

E

P,Q
EA

fA(P), fA(Q)

EB

EAB

fB

fA

E× EAB EA × EB

F

14
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Computational aspects of the attacks

dA + dB ∈ {2n, 3m} ⇒ need (2, 2)- and (3, 3)-isogenies

(2, 2)-isogenies→ attack Bob’s secret.

• Original implementations: Richelot isogenies
• Explicit formulas in Mumford/Kummer coordinates (Kunzweiler

’2022)
• Explicit formulas in theta coordinates

(Dartois-Maino-Pope-Robert ’2023).

(3, 3)-isogenies→ attack Alice’s secret.

• First implementation (Decru-Kunzweiler ’2023) optimizing
formulas by Bruin-Flynn-Testa (2014)
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More dimensions!
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Why do we need more dimensions in cryptography?

1. for cryptanalysis: The unconditional poly-time attack on SIDH
(Robert) requires working in dimension 8.

⇒ new tool: HD representations!

HD representations

Any N-isogeny f : E → E′ (of elliptic curves) has an efficient
representation in dimension d ∈ {2, 4, 8}.
⇒ Evaluation in O(logc(N)) for some constant c.

2. for constructive applications:

• SQISignHD
• SQISign2D ×3
• FESTA, QFESTA
• IS-CUBE

• POKE
• SCALLOP-HD
• HD VRF
• CLAPOTIS

since 2022!
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Computations in arbitrary dimensions

A: principally polarized abelian variety of dimension g.

✗ Dimension g > 3: A generically not the Jacobian of a curve.
✓ The Kummer variety K = A/⟨±1⟩ has a nice representation:

θ : K → P2g−1

given by theta coordinates.

ϕ : A→ A′: an (ℓ, . . . , ℓ)-isogeny of p.p.a.v.

• ℓ = 2: Algorithm by Robert (2023) in any dimension.
✓ Implementations by Dartois, Maino, Pope, Robert (g = 2) and

Dartois (g = 4)
✗ dimensions g = 3 and g > 4 missing.

• ℓ ̸= 2 prime: Algorithms by Cosset, Lubicz, Robert in Õ(ℓg).
✗ not yet optimized for crypto applications.
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✗ not yet optimized for crypto applications.

18



Computations in arbitrary dimensions

A: principally polarized abelian variety of dimension g.

✗ Dimension g > 3: A generically not the Jacobian of a curve.
✓ The Kummer variety K = A/⟨±1⟩ has a nice representation:

θ : K → P2g−1

given by theta coordinates.

ϕ : A→ A′: an (ℓ, . . . , ℓ)-isogeny of p.p.a.v.

• ℓ = 2: Algorithm by Robert (2023) in any dimension.
✓ Implementations by Dartois, Maino, Pope, Robert (g = 2) and

Dartois (g = 4)
✗ dimensions g = 3 and g > 4 missing.

• ℓ ̸= 2 prime: Algorithms by Cosset, Lubicz, Robert in Õ(ℓg).
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Conclusion

Exciting time for higher
dimensions in

isogeny-based cryptography.

What’s next?

• Optimize higher dimensional computations.
• More applications of HD-representations.
• Exploit the full structure of higher dimensional isogeny graphs.

• Better understanding of higher dimensional isogeny graphs.

Thanks for your attention!
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