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The 1-dimensional picture
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An Elliptic Curve E over F
is defined by an equation

E:y*=x>+ax+b,
where 4a3 + 27b? # o.

Points of E form an
additive group.

+ Can compute P + Q for points P,Q € E(F ).
+ Can compute m - P for a point P € E(F,x) and m € Z.

= One-way function: m — m - P for some fixed P € E(F ).
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Isogenies

Anisogeny ¢ : E — E’ is a (special)
/ map between elliptic curves.
N An N-isogeny is an isogeny
¢ : E— E' with kernel K ~ Z/NZ.
/\ \./\ « Complexity: O(N) (vélu) or
\ \ O(v/N) (velu)
Smooth-degree isogenies

+ Composition of small degree
isogenies
« E.g. for N = 2% in time

0(klog(k)).



Isogeny graphs

- Vertices: elliptic curves (E).
« Edges: (-isogenies with ¢ € {¢,,..., 0y} @—@

Two typical graphs

supersingular curves over Fp. supersingular curves over F,
te{2,3}, p=431 t€{3,5,7} p = 419.



Isogenies as one-way functions

Setup Fix an elliptic curve @,
inan {¢,,...,¢y}-isogeny graph with efficient navigation.

Isogeny one-way function

Input path in the graph Output

bit-string - @—...—@ - @

No polynomial quantum attacks are known.
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Key exchange based on isogenies

Setup Secret paths Exchange
Fix a starting  Alice: Alice 5 Bob
curve (E). O0—0~0—...7O g
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Key exchange based on isogenies

Setup Secret paths Exchange Shared key
Fix a starting ~ Alice: Alice 5 Bob  repeating* the path,
curve (E). O—0—0—...—O ) o

Bob:

Oo—O0—0C—..— 0

o o

(*) It is not obvious how to repeat a path with a different starting vertex,
so that the paths commute.
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CGL hash function Cryptographic
hash functions from expander
graphs.

SIDH

Towards quantum-resistant cryp-
tosystems from supersingular elliptic
curve isogenies

2018,
Castryck, Lange, Martindale,
Panny, Renes
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compact post-quantum signatures
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Isogeny-based primitives in dimension 1

b

Hard homogeneous space
Group-action based cryptography
— DH key exchange with isogenies.

Public-key cryptosystem based on
isogenies
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CSIDH:
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tive group action
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2020
T de Feo, Kohel, Leroux, Petit, Wesolowski



The 2-dimensional picture




What are 2-dimensional elliptic curves ?

An elliptic curve

* is a 1-dimensional
E:Y?Z=X3+aXZ? +bZ? c P

* equipped with a

S



What are 2-dimensional ettiptrcemrves

principally polarized abelian varieties?

An elliptic curve
+ is a 1-dimensional

E:Y?Z=X3+aXZ*> + bZ? C P2
* equipped with a

Itis a principally polarized abelian variety (p.p.a.v.) of dimension 1.



What are 2-dimensional ettiptrcemrves

principally polarized abelian varieties?

An elliptic curve
+ is a 1-dimensional

E:Y?Z=X3+aXZ*> + bZ? C P2
* equipped with a

Itisa principally polarized abelian variety (p.p.a.v.) of dimension 1.

How to construct a p.p.a.v. of dimension 2?

1+1=2:
product of elliptic curves
E, xE,
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2 = 2: Irreducible p.p.a.v of dimension 2

Genus-2 curve C : y? = f(x), with deg(f) € {5,6}.

o o <
—1)(X* — &)

y2 = x(x
The Jacobian of C, Jac(C), is a principally polarized abelian surface.

« Complicated as a variety (e.g.
defined by 72 polynomials in P').
+ Easy description of D € Jac(C):
D = (P, Q) with P, Q points of C.
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Isogenies in dimension 2

dimension 1
N-isogeny ¢ : E — E’ surjective
morphism with ker(¢) ~ Z/NZ.

{7

\ 3-isoge:y/\

all isogenies are generic

Weil pairing is trivial.

dimension 2
(N, N)-isogeny surjective
morphism ¢ : A — A’ has
isotropic’ ker(¢) ~ (Z/NZ)?

7
@X

4 isogeny types:
generic 3. gluing
2. splitting 4. product

10



Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces (vey inaccurate) sketch of
OExFE an isogeny graph
o o o
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generically, the graph is 15-regular
9More details on Slide 15 (for ¢ = 2)

1"



Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces (vey inaccurate) sketch of
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Ce{ty,... .0y}
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Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces (vey inaccurate) sketch of
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Isogeny graphs in dimension 2

(vey inaccurate) sketch of
an isogeny graph

Vertices: p.p. abelian surfaces
OExE @Jac(C)
Edges: (¢, ¢)-isogenies with

Ce{ty,... .0y}
OO o0
OO OO0

More details on Slide 15

¢=2,p=53
generically, the graph is 15-regular

(for ¢ = 2)
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Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces (vey ina.ccurate) sketch of
OExE @Jac(C) an lsogtinxgraph

Edges: (¢, ¢)-isogenies with
Ce{ty,... .0y}

O-O o0

o0 OO0

Key features

cHOS>HO

« For small ¢, we can navigate
efficiently. @

+ Finding a path
@ ... 00

¢=2,p=053
is hard

generically, the graph is 15-regular
9More details on Slide 15 (for ¢ = 2)

1"



Generalization of 1-dimensional crypto to dimension 2

G CRS key exchange

Tormases o CRS key exchange

CGL hash function -9 22%, cue e

SIDH key ex- 20m
change o oo, a0

CSIDH key ex-
change

saisign 2020

12



Generalization of 1-dimensional crypto to dimension 2

2018
Takashima

2020
Castryck,
Decru, Smith

0O)
1\

O

Efficient algorithms for isogeny se-
quences and their cryptographic
applications

First generalization of the CGL hash
function

Hash functions from superspecial
genus-2 curves using Richelot isoge-
nies

Repair of Takashima’s hash function

1997
Coiges

2006

CGL hash function
SIDH key ex-
change
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saisign

CRS key exchange

CRS key exchange
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Generalization of 1-dimensional crypto to dimension 2

2018
Takashima

2019
Flynn, Ti q

2020

Castryck, O

Decru, Smith

2021,

0O)
1\

Y

Kunzweiler, Ti,
Weitkdmper

Efficient algorithms for isogeny se-
quences and their cryptographic
applications

First generalization of the CGL hash
function

Genus two isogeny cryptography
First generalization of the SIDH key
exchange (G2SIDH)

Hash functions from superspecial
genus-2 curves using Richelot isoge-
nies

Repair of Takashima’s hash function

1997
Coiges

2006

CGL hash function

\\ SIDH key ex-
change

2018,
st Lange rindale

saisign

CRS key exchange

CRS key exchange

2009
20m

CSIDH key ex-
change

2020

Secret keys in genus-2 SIDH
Improvement of the G2SIDH protocol
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Generalization of 1-dimensional crypto to dimension 2

2018 .
Takashima O < applications
First generalization of the CGL hash
function
o0 Genus two isogeny cryptography N 7 b cRs key exchange
Flynn, Ti QO < First generalization of the SIDH key f \;
! exchange (G2SIDH) ’
2006 soman®  CRS key exchange
CGL hash function -9 22%, cue e
. . N o
Hash functions from superspecial AN = &= 20
ey . a 3 change Qs
Castryck, o genus-2 curves using Richelot isoge-
Decru, Smith itz % sy DM ey e
' Repair of Takashima’s hash function e g
saisign i ——
2021,

Efficient algorithms for isogeny se-
quences and their cryptographic

Secret keys in genus-2 SIDH

Kunzweiler, Ti, £ th
Weitkimper Improvement of the G2SIDH protocol
open problem
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Dimension 2 meets dimension 1




Kani's Lemma (1997)

Isogeny diamond Product isogeny
(dimension 1) (dimension 2)
fa
~~
~ + O @
- N
\\
e (&) (da + dg,da + dg)-
da-isogeny f, and dg-isogeny fp isogeny F

dy + dg interpolation data of fa,fg = kernel of F

13



The attacks on Supersingular Isogeny Diffie-Hellman (SIDH)

Kani’'s lemma serves as a key ingredient for attacking the isogeny
one-way function with torsion point information.

Setting Given E, E, and interpolation data P, Q, fa(P),fa(Q) with
<P> Q> = E[dA < dB], find fA-
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The attacks on Supersingular Isogeny Diffie-Hellman (SIDH)

Kani’'s lemma serves as a key ingredient for attacking the isogeny
one-way function with torsion point information.

Setting Given E, E, and interpolation data P, Q, fa(P),fa(Q) with
<P> Q> = E[dA < dB], find fA-

Idea (Castryck-Decru, Maino-Martindale-Panny-Pope-Wesolowski, Robert)

1. Construct f5 to obtain an isogeny diamond.
2. Use Kani to obtain a product isogeny F.

3. Recover f, from F.
fa(P).fa(Q)

o B0 (B8 ‘ e
» @

14



Computational aspects of the attacks

da+dg € {2",3™} = need (2,2)- and (3,3)-isogenies
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da+dg € {2",3™} = need (2,2)- and (3,3)-isogenies

(2,2)-isogenies — attack Bob’s secret.

« Original implementations: Richelot isogenies

« Explicit formulas in Mumford/Kummer coordinates (Kunzweiler
'2022)

+ Explicit formulas in theta coordinates
(Dartois-Maino-Pope-Robert '2023).
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Computational aspects of the attacks

da+dg € {2",3™} = need (2,2)- and (3,3)-isogenies

(2,2)-isogenies — attack Bob’s secret.

« Original implementations: Richelot isogenies

« Explicit formulas in Mumford/Kummer coordinates (Kunzweiler
'2022)

+ Explicit formulas in theta coordinates
(Dartois-Maino-Pope-Robert '2023).

(3,3)-isogenies — attack Alice’s secret.

« First implementation (Decru-Kunzweiler '2023) optimizing
formulas by Bruin-Flynn-Testa (2014)

« Formulas in theta coordinates (Costello-Santos-Smith '2024)

15
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The 3-dimensional picture(s)
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dimension 1 )
(abelian surfaces) (abelian threefolds)

(abelian curves)

product of elliptic curves roducts
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The 3-dimensional picture(s)

dimension 2 dimension 3

dimension 1 . 5
(abelian surfaces) (abelian threefolds)

(abelian curves)

product of elliptic curves

elliptic curve products
Jacobian of a genus-2 i %
curve Jacobians of genus-3 curves
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Why do we need more dimensions in cryptography?

1. for cryptanalysis: The unconditional poly-time attack on SIDH
(Robert) requires working in dimension 8.

= new tool: HD representations!

HD representations

Any N-isogeny f : E — E’ (of elliptic curves) has an efficient
representation in dimension d € {2,4,8}.
= Evaluation in O(log®(N)) for some constant c.

2. for constructive applications:

+ SQISignHD - POKE
- SQISign2D x3 « SCALLOP-HD
» FESTA, QFESTA * HD VRF

» I1S-CUBE + CLAPOTIS



Computations in arbitrary dimensions

A: principally polarized abelian variety of dimension g.

X Dimension g > 3: A generically not the Jacobian of a curve.
v/ The Kummer variety K = A/(41) has a nice representation:

9:K— P>

given by theta coordinates.
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Computations in arbitrary dimensions

A: principally polarized abelian variety of dimension g.

X Dimension g > 3: A generically not the Jacobian of a curve.
v/ The Kummer variety K = A/(41) has a nice representation:

0:K—P¥
given by theta coordinates.
¢:A—Atan (4,...,0)-isogeny of p.p.a.v.

« ¢ = 2: Algorithm by Robert (2023) in any dimension.
7/ Implementations by Dartois, Maino, Pope, Robert (g = 2) and
Dartois (g = 4)
X dimensions g = 3 and g > 4 missing.
« ( # 2 prime: Algorithms by Cosset, Lubicz, Robert in O(¢9).
X not yet optimized for crypto applications.



Exciting time for higher
dimensions in
isogeny-based cryptography.

What's next?

+ Optimize higher dimensional computations.
+ More applications of HD-representations.
« Exploit the full structure of higher dimensional isogeny graphs.

« Better understanding of higher dimensional isogeny graphs.
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Exciting time for higher
dimensions in
isogeny-based cryptography.

What's next?

+ Optimize higher dimensional computations.
+ More applications of HD-representations.
« Exploit the full structure of higher dimensional isogeny graphs.

« Better understanding of higher dimensional isogeny graphs.

Thanks for your attention!
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