CCA Secure Updatable Encryption from Non-Mappable Group Actions

Jonas Meers, <u>Doreen Riepel</u>

June 13, 2024

Cloud Storage

Rotate encryption keys

Inefficient!

Cloud Storage

Rotate encryption keys

Goals

- Confidentiality: Cannot distinguish encryptions of two chosen messages
- Integrity: Cannot modify ciphertexts
- Unlinkability: Cannot tell which ciphertext an update was derived from
- Forward secrecy: Old ciphertext is secure even if current key leaks
- Post-compromise security: Old key does not help to decrypt updated ciphertext

Updatable Encryption UE = (KeyGen, Enc, Dec, TokenGen, Upd)

Updatable Encryption UE = (KeyGen, Enc, Dec, TokenGen, Upd)

Updatable Encryption UE = (KeyGen, Enc, Dec, TokenGen, Upd)

Updatable Encryption UE = (KeyGen, Enc, Dec, TokenGen, Upd)

Updatable Encryption UE = (KeyGen, Enc, Dec, TokenGen, Upd)

3/14

Exact definition depends on properties of the scheme

- Randomized or deterministic ciphertext updates
- Bi-directional and uni-/no-directional key updates
- CPA and (R)CCA security

Exact definition depends on properties of the scheme

- Randomized or deterministic ciphertext updates
- Bi-directional and uni-/no-directional key updates
- CPA and (R)CCA security

Exact definition depends on properties of the scheme

- Randomized or deterministic ciphertext updates
- Bi-directional and uni-/no-directional key updates
- CPA and (R)CCA security

Corrupted keys: $k^{(1)}$, $k^{(6)}$

Corrupted tokens: $\Delta^{(1)}$, $\Delta^{(4)}$

Inferred knowledge: $k^{(2)}$, $M^{(1)}$, $M^{(2)}$, $M^{(6)}$

(det)IND-UE-CPA

• Distinguish updated ciphertext from encryption of a new message

(det)IND-UE-CPA

• Distinguish updated ciphertext from encryption of a new message

Is not allowed to get $ilde{C}_b^{(6)}$

Is not allowed to get $ilde{C}_b^{(6)}$

Cryptographic Group Actions

Definition: Group Action

Let (\mathcal{G}, \cdot) be a group with identity element e and \mathcal{X} a set. A group action is a map

$$\star: \mathcal{G} \times \mathcal{X} \to \mathcal{X}$$

which satisfies

- 1. Identity: $e \star x = x$ for all $x \in \mathcal{X}$
- 2. Compatibility: $(g \cdot h) \star x = g \star (h \star x)$ for all $g, h \in \mathcal{G}, x \in \mathcal{X}$

Cryptographic Group Actions

Definition: Group Action

Let (\mathcal{G}, \cdot) be a group with identity element e and \mathcal{X} a set. A group action is a map

$$\star: \mathcal{G} \times \mathcal{X} \to \mathcal{X}$$

which satisfies

- 1. Identity: $e \star x = x$ for all $x \in \mathcal{X}$
- 2. Compatibility: $(g \cdot h) \star x = g \star (h \star x)$ for all $g, h \in \mathcal{G}, x \in \mathcal{X}$

Computational Problems

- DLOG: given $(x, g \star x)$ for $g \leftarrow^{\$} \mathcal{G}$, compute g.
- CDH: given $(x, g \star x, h \star x)$ for $g, h \leftarrow^{\$} \mathcal{G}$, compute $gh \star x$.
- DDH: given $(x, g \star x, h \star x, z)$, decide whether $z = gh \star x$ or random

Cryptographic Group Actions

Definition: Group Action

Let (\mathcal{G}, \cdot) be a group with identity element e and \mathcal{X} a set. A group action is a map

$$\star: \mathcal{G} \times \mathcal{X} \to \mathcal{X}$$

which satisfies

- 1. Identity: $e \star x = x$ for all $x \in \mathcal{X}$
- 2. Compatibility: $(g \cdot h) \star x = g \star (h \star x)$ for all $g, h \in \mathcal{G}, x \in \mathcal{X}$

Computational Problems

- DLOG: given $(x, g \star x)$ for $g \leftarrow^{\$} \mathcal{G}$, compute g.
- CDH: given $(x, g \star x, h \star x)$ for $g, h \leftarrow^{\$} \mathcal{G}$, compute $gh \star x$.
- DDH: given $(x, g \star x, h \star x, z)$, decide whether $z = gh \star x$ or random

CSIDH [AC:CLMPR18]

 \mathcal{G} = isogenies between elliptic curves

 $\mathcal{X}=$ supersingular elliptic curves over \mathbb{F}_p

- Adaptation of SHINE [C:BDGJ20] to group actions
- Key $k \in \mathcal{G}$, ideal cipher $\mathbf{IC}: \{0,1\}^{\ell} \times \{0,1\}^{\lambda} \to \mathcal{X}$ maps message and random nonce to the set ("mappable")

- Adaptation of SHINE [C:BDGJ20] to group actions
- Key $k \in \mathcal{G}$, ideal cipher $\mathbf{IC}: \{0,1\}^{\ell} \times \{0,1\}^{\lambda} \to \mathcal{X}$ maps message and random nonce to the set ("mappable")

- Adaptation of SHINE [C:BDGJ20] to group actions
- Key $k \in \mathcal{G}$, ideal cipher $\mathbf{IC}: \{0,1\}^{\ell} \times \{0,1\}^{\lambda} \to \mathcal{X}$ maps message and random nonce to the set ("mappable")

- Adaptation of SHINE [C:BDGJ20] to group actions
- Key $k \in \mathcal{G}$, ideal cipher $\mathbf{IC}: \{0,1\}^{\ell} \times \{0,1\}^{\lambda} \to \mathcal{X}$ maps message and random nonce to the set ("mappable")

GAINE [PQCRYPTO:LerRom24]

- Adaptation of SHINE [C:BDGJ20] to group actions
- Key $k \in \mathcal{G}$, ideal cipher $\mathbf{IC}: \{0,1\}^{\ell} \times \{0,1\}^{\lambda} \to \mathcal{X}$ maps message and random nonce to the set ("mappable")

But: For CSIDH we do not know how to map into \mathcal{X} [EPRINT:BBDFGKMPSSTVVWZ22,EPRINT:MulMurPin22].

Our Schemes

Message space $\mathcal{M} = \{0,1\}^n \setminus \{0^n,1^n\}$, $M = (m_1,...,m_n)$ for some n > 1

Key space $\mathscr{K}=\mathscr{G}^n$, need some "ordering" for set elements in \mathscr{X}

Message space $\mathcal{M} = \{0,1\}^n \setminus \{0^n,1^n\}$, $M = (m_1,...,m_n)$ for some n > 1

Key space $\mathcal{K}=\mathcal{G}^n$, need some "ordering" for set elements in \mathcal{X}

Encryption

Pick $x_0, x_1 \leftarrow^{\$} \mathcal{X}$ s.t. $x_0 \prec x_1$ (can be done by sampling from \mathcal{G})

Message space $\mathcal{M} = \{0,1\}^n \setminus \{0^n,1^n\}$, $M = (m_1,...,m_n)$ for some n > 1

Key space $\mathcal{K} = \mathcal{G}^n$, need some "ordering" for set elements in \mathcal{X}

Encryption

Pick $x_0, x_1 \leftarrow^{\$} \mathcal{X}$ s.t. $x_0 \prec x_1$ (can be done by sampling from \mathcal{G})

Token Generation and Update

Message space $\mathcal{M} = \{0,1\}^n \setminus \{0^n,1^n\}$, $M = (m_1,...,m_n)$ for some n > 1

Key space $\mathscr{K}=\mathscr{G}^n$, need some "ordering" for set elements in \mathscr{X}

Encryption

Pick $x_0, x_1 \leftarrow^{\$} \mathcal{X}$ s.t. $x_0 \prec x_1$ (can be done by sampling from \mathcal{G})

Message space $\mathcal{M} = \{0,1\}^n \setminus \{0^n,1^n\}$, $M = (m_1,...,m_n)$ for some n > 1

Key space $\mathcal{K} = \mathcal{G}^n$, need some "ordering" for set elements in \mathcal{X}

Encryption

Pick $x_0, x_1 \leftarrow^{\$} \mathcal{X}$ s.t. $x_0 \prec x_1$ (can be done by sampling from \mathcal{G})

Token Generation and Update

Decryption

If
$$|\{x'_0, x'_1, ... x'_n\}| = 2$$
:
Parse bits of M

$$k_1'^{-1}$$
 C_1' x_1' x_1' $x_2'^{-1}$ $x_2'^{-1}$

Firewall technique [C:BDGJ20]

- Guess start and end of insulated regions (firewalls)
- Hybrid argument over those regions

Firewall technique [C:BDGJ20]

- Guess start and end of insulated regions (firewalls)
- Hybrid argument over those regions

Firewall technique [C:BDGJ20]

- Guess start and end of insulated regions (firewalls)
- Hybrid argument over those regions

 $\ell\text{-th}$ insulated region

corrupted

inferred knowledge

not visible

Firewall technique [C:BDGJ20]

- Guess start and end of insulated regions (firewalls)
- Hybrid argument over those regions

 ℓ -th insulated region

Goal: replace $\tilde{C}_i^{(j)} = k_i^{(j)} \star x_{m_{b,i}}$ inside insulated regions with random elements from \mathcal{X}

• Use (multi-instance) group action DDH: given $(x, x_b, k \star x, u \star x_b)$, decide whether u = k or random

corrupted

not visible

inferred knowledge

Scheme 2: COM-UE

Observations

- BIN-UE (as most other UE schemes) is malleable
- It is randomness-recoverable and randomness-preserving
 - $\Rightarrow x_0, x_1$ are available to an adversary in the security game

Scheme 2: COM-UE

Observations

- BIN-UE (as most other UE schemes) is malleable
- It is randomness-recoverable and randomness-preserving
 - $\Rightarrow x_0, x_1$ are available to an adversary in the security game

COM-UE: Tag-then-Encrypt

- We define encryption as BIN-UE.Enc(k, M||T; r), where
 - -T = H(M, r) using hash function $H: \{0,1\}^* \rightarrow \{0,1\}^\ell$
 - $-r = (x_0, x_1)$ is the encryption randomness

Scheme 2: COM-UE

Observations

- BIN-UE (as most other UE schemes) is malleable
- It is randomness-recoverable and randomness-preserving
 - $\Rightarrow x_0, x_1$ are available to an adversary in the security game

COM-UE: Tag-then-Encrypt

- We define encryption as BIN-UE.Enc(k, M || T; r), where
 - -T = H(M, r) using hash function $H: \{0,1\}^* \rightarrow \{0,1\}^\ell$
 - $-r = (x_0, x_1)$ is the encryption randomness

Ciphertext Integrity

- ullet Should be hard to forge valid ciphertext without knowledge of k
- COM-UE binds the encryption randomness and message to the ciphertext using H to prevent malleability

Ciphertext Integrity

- Should be hard to forge valid ciphertext without knowledge of k
- COM-UE binds the encryption randomness and message to the ciphertext using H to prevent malleability

[C:BDGJ20]: IND-UE-CPA + INT-CTXT \Rightarrow IND-UE-CCA

Ciphertext Integrity

- Should be hard to forge valid ciphertext without knowledge of k
- COM-UE binds the encryption randomness and message to the ciphertext using H to prevent malleability

[C:BDGJ20]: IND-UE-CPA + INT-CTXT
$$\Rightarrow$$
 IND-UE-CCA same as for BIN-UE

Tag-then-Encrypt

• We define encryption as BIN-UE.Enc(k, M || T; r), where T = H(M, r) using hash function $H: \{0,1\}^* \to \{0,1\}^\ell$ and encryption randomness $r = (x_0, x_1)$

Tag-then-Encrypt

• We define encryption as BIN-UE.Enc(k, M || T; r), where T = H(M, r) using hash function $H: \{0,1\}^* \to \{0,1\}^\ell$ and encryption randomness $r = (x_0, x_1)$

Intuition for INT-CTXT

- Forging a ciphertext allows to solve a non-standard variant of CDH
- Embed the challenge by modeling H as a random oracle

Adversary must come up with encryption of a random message

Conclusion

Summary

- Updatable encryption from group actions requires some form of mappability
- Since CSIDH does not allow mapping into the set, we use a bit-wise approach
- BIN-UE achieves CPA security relying on (multi-instance) DDH for group actions
- COM-UE is the first CCA secure UE scheme based on post-quantum assumptions (in the algebraic/generic group action model)

Conclusion

Summary

- Updatable encryption from group actions requires some form of mappability
- Since CSIDH does not allow mapping into the set, we use a bit-wise approach
- BIN-UE achieves CPA security relying on (multi-instance) DDH for group actions
- COM-UE is the first CCA secure UE scheme based on post-quantum assumptions (in the algebraic/generic group action model)

ia.cr/2024/499

Conclusion

Summary

- Updatable encryption from group actions requires some form of mappability
- Since CSIDH does not allow mapping into the set, we use a bit-wise approach
- BIN-UE achieves CPA security relying on (multi-instance) DDH for group actions
- COM-UE is the first CCA secure UE scheme based on post-quantum assumptions (in the algebraic/generic group action model)

ia.cr/2024/499

Thank you!