Compact Encryption based on Module-NTRU Problems

Shi Bai¹, Hansraj Jangir¹, Hao Lin², Tran Ngo¹, **Weiqiang Wen**³ and Jinwei Zheng³

¹Florida Atlantic University ²Delft University of Technology ³Telecom Paris, Institut Polytechnique de Paris

PQCrypto 2024, Oxford

Our results based on Module-NTRU

The comparison regarding ciphertext size (bytes)			
	Level-I	Level-II	Level-III
NTRU # hps	931	1230	_
NTRU Prime # sntrup	897	1184	1455
Kyber	768	1088	1568
NEV [ZFY23]	614	_	1228
Our work (IND-CPA)	670	1005	1339
Our work (OW-CPA)	614	921	1228

Our results based on Module-NTRU

The comparison regarding ciphertext size (bytes)			
	Level-I	Level-II	Level-III
NTRU # hps	931	1230	_
NTRU Prime # sntrup	897	1184	1455
Kyber	768	1088	1568
NEV [ZFY23]	614	_	1228
Our work (IND-CPA)	670	1005	1339
Our work (OW-CPA)	614	921	1228

Our results based on Module-NTRU

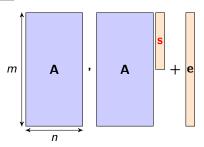
The comparison regarding ciphertext size (bytes)			
	Level-I	Level-II	Level-III
NTRU # hps	931	1230	_
NTRU Prime # sntrup	897	1184	1455
Kyber	768	1088	1568
NEV [ZFY23]	614	_	1228
Our work (IND-CPA)	670	1005	1339
Our work (OW-CPA)	614	921	1228

Table of contents

- Ring learning with errors and NTRU problems
- First design of encryption based on Module-NTRU
- Second design of encryption based on vectorial Module-NTRU
- Future works

The Learning With Errors Problem [Regev05]

The Learning With Errors (LWE) samples:

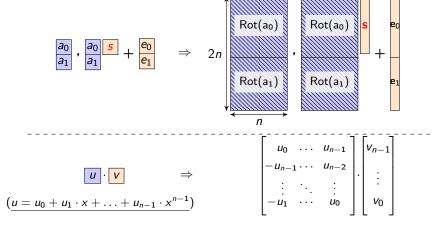


where $\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \leftarrow \mathbb{Z}_q^n$, $\mathbf{e} \leftarrow D_{\mathbb{Z}, \alpha q}^m$ for modulus q, $\alpha \in (0, 1)$.

- Search variant: find s.
- Decision variant: distinguish between $(\mathbf{A}, \mathbf{As} + \mathbf{e})$ and $U(\mathbb{Z}_q^{m \times n}, \mathbb{Z}_q^m)$.

The Ring Learning With Errors Problem [SSTX09,LPR10]

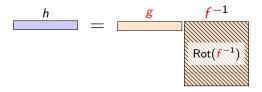
The Ring Learning With Errors (RLWE) samples:



where $a_0, a_1 \leftarrow R_q$, $s \leftarrow R_q$, $e_0, e_1 \leftarrow D_{R,\alpha q}$ for $R = \mathbb{Z}[x]/(x^n + 1)$ with $n = 2^{\nu}$, modulus $q, \alpha \in (0,1)$.

The NTRU Problem [HPS98]

The NTRU sample:



where both $g, f \in R$ (e.g., $R = \mathbb{Z}[x]/(x^n + 1)$) have small coefficients and f is invertible.

- Search variant: find g, f.
- Decision variant: distinguish between h and $U(R_q)$.

The NTRU-based NEV encryption in [ZFY23]

Here, we let n denote the ring degree and review the encryption as follows.

- KeyGen: $h = g \cdot f^{-1}$.
- Enc(h, m): given message m a polynomial of degree n/2 1, the ciphertext

$$c = h \cdot r + e + \frac{q+1}{2} \left(m + m \cdot x^{n/2} \right),$$

where $r, e \leftarrow R$ with small coefficients.

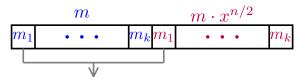
The NTRU-based NEV encryption in [ZFY23]

Here, we let n denote the ring degree and review the encryption as follows.

- KeyGen: $h = g \cdot f^{-1}$.
- Enc(h, m): given message m a polynomial of degree n/2 1, the ciphertext

$$c = h \cdot r + e + \frac{q+1}{2} \left(m + m \cdot x^{n/2} \right),$$

where $r, e \leftarrow R$ with small coefficients.

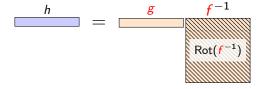


Two positions to decode 1 bit m_1

• Such technique was already considered in [ADPS16,PG13].

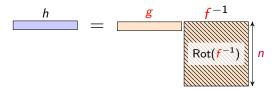
There are only two choices of parameters in NEV

 This is mainly due to the sparsity of Power-of-Two rings: ring degree jumps from 512 to 1024.

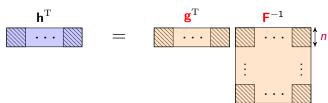


Towards more choices under module-NTRU [CPS+20]

• With module version of NTRU with rank k, we can now pick ring degree n=256, and size of the problem $n \times k$ can have more choices $\{512, 768, 1024\}$.



The Module-NTRU sample:



where both $\mathbf{g} \leftarrow R_q^k$, $\mathbf{F} \in R_q^{k \times k}$ have polynomial components with small coefficients and \mathbf{F} is invertible.

Towards better size for intermediate security level?

NTRU world

Module-NTRU world

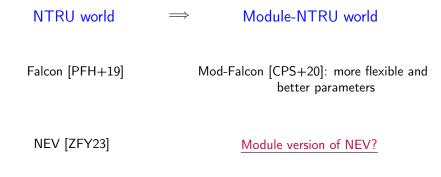
Towards better size for intermediate security level?

NTRU world \Longrightarrow Module-NTRU world

Falcon [PFH+19] Mod-Falcon [CPS+20]: more flexible and better parameters

• Falcon has been improved, especially for the intermediate security level with the help of module version of NTRU!

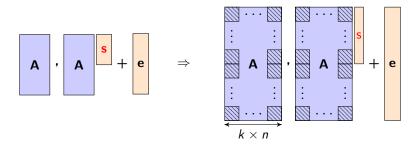
Towards better size for intermediate security level?



 Given the success of module version of Falcon, how about module version of NEV?

The Module Learning With Errors problem [BGV12,LS15]

The Module Learning With Errors (MLWE) samples:



where $\mathbf{A} \leftarrow R_q^{2k \times k}$, $\mathbf{s} \leftarrow R_q^k$, $\mathbf{e} \leftarrow D_{R^{2k}, \alpha q}$ for $R = \mathbb{Z}[x]/(x^n + 1)$ with $n = 2^{\nu}$, modulus q, $\alpha \in (0, 1)$.

Our first encryption based on Module-NTRU

The Module-NTRU based encryption:

- KeyGen: $\mathbf{h}^{\mathrm{T}} = \mathbf{g}^{\mathrm{T}} \mathbf{F}^{-1}$
- Enc(h, m): the ciphertext

$$c = p \cdot \mathbf{h}^{\mathrm{T}} \mathbf{r} + p \cdot e + m,$$

where \mathbf{r} , e have polynomial components with small coefficients.

Our first encryption based on Module-NTRU

The Module-NTRU based encryption:

- KeyGen: $\mathbf{h}^{\mathrm{T}} = \mathbf{g}^{\mathrm{T}} \mathbf{F}^{-1}$
- $Enc(\mathbf{h}, m)$: the ciphertext

$$c = p \cdot \mathbf{h}^{\mathrm{T}} \mathbf{r} + p \cdot e + m,$$

where \mathbf{r} , e have polynomial components with small coefficients.

To decrypt, we make use of the fact that

$$\mathbf{F} \operatorname{adj}(\mathbf{F}) = \det(\mathbf{F}) \cdot \mathbf{I}_k \Rightarrow \mathbf{g}^{\mathrm{T}} \operatorname{adj}(\mathbf{F}) = \det(\mathbf{F}) \cdot \mathbf{h}^{\mathrm{T}}.$$

Our first encryption based on Module-NTRU

The Module-NTRU based encryption:

- KeyGen: $\mathbf{h}^{\mathrm{T}} = \mathbf{g}^{\mathrm{T}} \mathbf{F}^{-1}$
- $Enc(\mathbf{h}, m)$: the ciphertext

$$c = p \cdot \mathbf{h}^{\mathrm{T}} \mathbf{r} + p \cdot e + m,$$

where \mathbf{r} , e have polynomial components with small coefficients.

To decrypt, we make use of the fact that

$$\mathbf{F} \operatorname{adj}(\mathbf{F}) = \det(\mathbf{F}) \cdot \mathbf{I}_k \Rightarrow \mathbf{g}^{\mathrm{T}} \operatorname{adj}(\mathbf{F}) = \det(\mathbf{F}) \cdot \mathbf{h}^{\mathrm{T}}.$$

• $Dec(c, det(\mathbf{F}))$: compute

$$\det(\mathbf{F}) \cdot c \mod p = p \cdot \det(\mathbf{F}) \cdot \mathbf{h}^{\mathrm{T}} \mathbf{r} + (p \cdot e + m) \cdot \det(\mathbf{F}) \mod p$$
$$= p \cdot \mathbf{g}^{\mathrm{T}} \operatorname{adj}(\mathbf{F}) \mathbf{r} + (p \cdot e + m) \cdot \det(\mathbf{F}) \mod p,$$

which equals to zero if m = 0, otherwise m = 1.

Can we gain benefit by recovering the determinant?

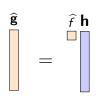
One might notice, now we have a NTRU-like instance:

• Let $\hat{f} = \det(\mathbf{F})$ and $\hat{\mathbf{g}} = \mathbf{g}^{\mathrm{T}} \mathrm{adj}(\mathbf{F})$, as $\mathbf{g}^{\mathrm{T}} \mathrm{adj}(\mathbf{F}) = \det(\mathbf{F}) \cdot \mathbf{h}^{\mathrm{T}}$, we have

Can we gain benefit by recovering the determinant?

One might notice, now we have a NTRU-like instance:

• Let $\hat{f} = \det(\mathbf{F})$ and $\hat{\mathbf{g}} = \mathbf{g}^{\mathrm{T}} \mathrm{adj}(\mathbf{F})$, as $\mathbf{g}^{\mathrm{T}} \mathrm{adj}(\mathbf{F}) = \det(\mathbf{F}) \cdot \mathbf{h}^{\mathrm{T}}$, we have



• It is highly possible that $\widehat{g}_i = \widehat{f} h_i$ has unique solution $(\widehat{g}_i, \widehat{f})$ for each $i \in [k]$.

Can we gain benefit by recovering the determinant?

One might notice, now we have a NTRU-like instance:

• Let $\widehat{f} = \det(\mathbf{F})$ and $\widehat{\mathbf{g}} = \mathbf{g}^{\mathrm{T}} \mathrm{adj}(\mathbf{F})$, as $\mathbf{g}^{\mathrm{T}} \mathrm{adj}(\mathbf{F}) = \det(\mathbf{F}) \cdot \mathbf{h}^{\mathrm{T}}$, we have

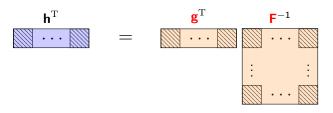
- It is highly possible that $\widehat{g}_i = \widehat{f} h_i$ has unique solution $(\widehat{g}_i, \widehat{f})$ for each $i \in [k]$.
- But, it does not help too much as the secrets of this new system also have a larger norm (multiplicatively related to the rank).

Parameter selection and concrete performance

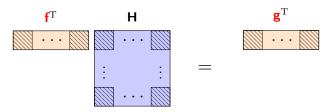
Module-NTRU-based Encryption (OW-CPA security)			
	Level-I	Level-II	Level-III
Ring degree n	384	512	768
Module rank k	2	2	2
Modulus <i>q</i>	30817	52609	118081
Dec. failure	2^{-127}	2^{-145}	2^{-145}
Bit security	142	187	272
Public key (bytes)	1432	2008	3235
Ciphertext (bytes)	716	1004	1618
NEV ciphertext	614	-	1228

• We have only consider NTTRU type of rings for instantiation, as the power-of-2 rings will require larger ranks, which lead to worse size! (Recall: NTTRU type of rings $R = \mathbb{Z}[x]/(x^n - x^{n/2} + 1)$ with $n = 2^{\mu}3^{\nu}$.)

Our second trial with vectorial MNTRU [BBJ+22,Gärtner23]

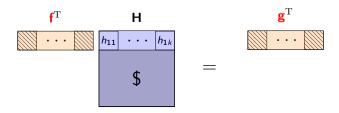


The vectorial Module-NTRU samples:



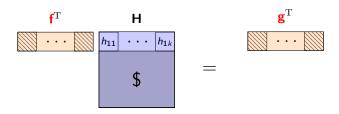
where both $\mathbf{f}, \mathbf{g} \in R^k$ have polynomial components with small coeffcients.

How to generate vectorial Module-NTRU sample?



- Sample the bottom part of H randomly, and pick f and g from designated distributions.
- Then the remaining (h_{11}, \dots, h_{1k}) will be fully determined by the bottom part of **H** as well as **f** and **g**.

How to generate vectorial Module-NTRU sample?



- Sample the bottom part of H randomly, and pick f and g from designated distributions.
- Then the remaining (h_{11}, \dots, h_{1k}) will be fully determined by the bottom part of **H** as well as **f** and **g**.
- As a result, here we can save some storage for the public key H. # by storing
 a random seed for generating the this random part

Our second encryption based on vectorial Module-NTRU

The Module-NTRU based encryption:

- KeyGen: $\mathbf{f}^{\mathrm{T}}\mathbf{H} = \mathbf{g}^{\mathrm{T}}$
- Enc(**H**, *m*): the ciphertext

$$\mathbf{c} = p \cdot \mathbf{Hr} + p \cdot \mathbf{e} + (0, \cdots, 0, m),$$

where \mathbf{r}, \mathbf{e} have polynomial components with small coefficients.

Our second encryption based on vectorial Module-NTRU

The Module-NTRU based encryption:

- KeyGen: $\mathbf{f}^{\mathrm{T}}\mathbf{H} = \mathbf{g}^{\mathrm{T}}$
- Enc(**H**, m): the ciphertext

$$\mathbf{c} = p \cdot \mathbf{Hr} + p \cdot \mathbf{e} + (0, \cdots, 0, m),$$

where \mathbf{r}, \mathbf{e} have polynomial components with small coefficients.

• Dec(c, f): compute

$$\mathbf{f}^{\mathrm{T}}\mathbf{c} \bmod p = p \cdot \mathbf{f}^{\mathrm{T}}\mathbf{H}\mathbf{r} + \mathbf{f}^{\mathrm{T}}(p \cdot \mathbf{e} + (0, \cdots, 0, m)) \bmod p$$
$$= p \cdot \mathbf{g}^{\mathrm{T}}\mathbf{r} + \mathbf{f}^{\mathrm{T}}(p \cdot \mathbf{e} + (0, \cdots, 0, m)) \bmod p,$$

which equals to zero if m = 0, otherwise m = 1.

Our second encryption based on vectorial Module-NTRU

The Module-NTRU based encryption:

- KeyGen: $\mathbf{f}^{\mathrm{T}}\mathbf{H} = \mathbf{g}^{\mathrm{T}}$
- Enc(**H**, m): the ciphertext

$$\mathbf{c} = p \cdot \mathbf{Hr} + p \cdot \mathbf{e} + (0, \cdots, 0, m),$$

where \mathbf{r}, \mathbf{e} have polynomial components with small coefficients.

• Dec(c, f): compute

$$\mathbf{f}^{\mathrm{T}}\mathbf{c} \bmod p = p \cdot \mathbf{f}^{\mathrm{T}}\mathbf{H}\mathbf{r} + \mathbf{f}^{\mathrm{T}}(p \cdot \mathbf{e} + (0, \cdots, 0, m)) \bmod p$$
$$= p \cdot \mathbf{g}^{\mathrm{T}}\mathbf{r} + \mathbf{f}^{\mathrm{T}}(p \cdot \mathbf{e} + (0, \cdots, 0, m)) \bmod p,$$

which equals to zero if m = 0, otherwise m = 1.

 \Rightarrow We move to a lower-degree ring, therefore has a smaller message polynomial contributing to the noise.

Parameter selection for IND-CPA security

Vectorial Module-NTRU-based Encryption			
	Level-I	Level-II	Level-III
Ring degree n	256	256	256
Module rank k	2	3	4
Modulus <i>q</i>	1409	1409	1409
Dec. failure	2^{-127}	2^{-133}	2^{-138}
Bit security	137	203	265
Public key (bytes)	702	1037	1371
Ciphertext (bytes)	670	1005	1339
NEV ciphertext	614	-	1228

 \Rightarrow Note that the Power-of-Two rings $R = \mathbb{Z}[x]/(x^n + 1)$ with $n = 2^{\nu}$ is considered in the above instantiations (IND-CPA security).

Parameter selection for OW-CPA security

Vectorial Module-NTRU-based Encryption			
	Level-I	Level-II	Level-III
Ring degree n	256	256	256
Module rank k	2	3	4
Modulus q	769	769	769
Dec. failure	2^{-127}	2^{-133}	2^{-138}
Bit security	144	210	282
Public key (bytes)	646	1009	1260
OW-CPA CT. (bytes)	614	921	1228
IND-CPA CT. (bytes)	670	1005	1339
NEV ciphertext	614	_	1228

⇒ We further apply message as error for the OW-CPA security (still with power-of-2 rings). The ciphertext is now:

$$\mathbf{c} = p \cdot \mathbf{Hr} + p \cdot (e_1, \dots, e_{k-1}, 0) + (0, \dots, 0, m).$$

Instantiation over NTTRU rings (OW-CPA security)

Module-NTRU-based Encryption			
	Level-I	Level-II	Level-III
Ring degree n	256	384	324
Module rank k	2	2	3
Modulus <i>q</i>	1153	1153	1297
Dec. failure	2^{-139}	2^{-130}	2^{-134}
Bit security	137	203	260
Public key (bytes)	683	1009	1289
Ours (NTTRU rings)	651	977	1257
Ours (power-of-2)	614	921	1228
NEV ciphertext	614	_	1228

[⇒] It provides more choices, but unfortunately, not with better efficiency.

Future works

- Can we use the double encryption technique for our second scheme?
- Is the modulus in our first scheme overstretched?
- The concrete parameters for FO transform to CCA security?

References

- [ADPS16] Alkim, Ducas, Pöppelmann, Schwabe: NewHope without reconciliation. Cryptology ePrint Archive, Report 2016/1157.
- [BBJ+22] Bai, Beard, Johnson, Vidhanalage, and Ngo: Fiat-shamir signcenteratures based on module-NTRU. ACISP 2022.
 - [BGV] Brakerski, Gentry and Vaikuntanathan: (Leveled) fully homomorphic encryption without bootstrapping. ITCS 2012.
- [Gärtner23] Gärtner: NTWE: A Natural Combination of NTRU and LWE. PQCrypto 2023.
 - [HPS98] Hoffstein, Pipher, and Silverman, NTRU: A Ring Based Public Key Cryptosystem, Proc. of ANTS (Joe Buhler, ed.), LNCS, vol. 1423, Springer, 1998, pp. 267–288.
 - [LS15] Langlois and Stehlé: Middle-product learning with rounding problem and its applications. In Des. Codes Cryptogr., 2015.
 - [LPR10] Lyubashevsky, Peikert, Regev: On Ideal Lattices and Learning with Errors over Rings. Eurocrypt 2010.
 - [PG13] Pöppelmann, Güneysu: Towards practical lattice-based public-key encryption on reconfigurable hardware. SAC 2013.
- [PFH+19] Prest, Fouque, Hoffstein, Kirchner, Lyubashevsky, Pornin, Ricosset, Seiler, Whyte and Zhang. FALCON. NIST report, 2019. Available at link.
- [Regev05] Regev: On lattices, learning with errors, random linear codes, and cryptography. STOC 2005.
- [SSTX09] Stehlé, Steinfeld, Tanaka, Xagawa: Efficient Public Key Encryption Based on Ideal Lattices. Asiacrypt 2009.
 - [ZFY23] Zhang, Feng, and Yan, Nev: Faster and smaller ntru encryption using vector decoding. Asiacrypt 2023.