PROBLEM SHEET 10

10.1 For the vectors \boldsymbol{a} and \boldsymbol{b} , show

(a)
$$|\boldsymbol{a}+\boldsymbol{b}|^2 + |\boldsymbol{a}-\boldsymbol{b}|^2 = 2(|\boldsymbol{a}|^2 + 2(|\boldsymbol{b}|^2))$$

(b)
$$\mathbf{a} \cdot \mathbf{b} = \frac{1}{4} (|\mathbf{a} + \mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2)$$

where |a| denotes the modulus of the vector a etc.

10.2 In component form let a = (1, -2, 2), b = (3, -1, -1), and c = (-1, 0, -1). Evaluate the following.

(a)
$$\boldsymbol{a} \times \boldsymbol{b}$$

(b)
$$a \cdot (b \times c)$$

(c)
$$c \cdot (a \times b)$$

10.3 What is the geometrical significance of $a \times b = 0$?

10.4 Show that the vectors $\mathbf{a} = 2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}$ and $\mathbf{b} = 6\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ are perpendicular. Find a vector which is perpendicular to \mathbf{a} and \mathbf{b} .

10.5 Let a, b, c be three non-coplanar vectors, and v be any vector. Show that v can be expressed as v = Xa + Yb + Zc, where X, Y, Z, are constants given by $X = v \cdot (b \times c)/D$, $Y = v \cdot (c \times a)/D$, $Z = v \cdot (a \times b)/D$, where $D = a \cdot (b \times c)$. (Hint: start by forming, say, $v \cdot (b \times c)$).