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Incompressible Euler equations

Ï A solution (u,P) to the incompressible Euler equations is such that{
∂tu+div (u⊗u)+∇P= 0, x ∈T3,
divu= 0.

If the solution is sufficiently smooth, say C1, then the total kinetic energy

E(u) := 1
2

∫
T3

|u(t,x)|2 dx

is conserved, and any solution is uniquely determined by the initial data.

Ï A folklore conjecture: Uniqueness should fail when u ∈Cα for some α< 1,

which is highly linked to Onsager’s conjecture.

Ï Question: Can we construct +∞ many global admissible weak solutions?

Ï It will narrow down further the class of weak solutions to single out

physical relevant solutions of the Euler equations for the

uniqueness.



Onsager’s semi-formal proof of the sufficient condition

Ï Roughly speaking, enough regularity allows us to control
convective term and to do integration by parts.

Ï The term to control is the total energy flux

Π= 〈div(u⊗u),u〉 ∼
〈

(∇1/3u⊗∇1/3u) :∇1/3u
〉

Thus the quantity ‖∇1/3u‖L3 appears. Any better regularity
would be sufficient to justify integration by parts to show
that the flux Π= 0.
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Onsager’s Conjecture [Onsager ’49]

The threshold Hölder regularity for the
validity of the energy conservation of weak
solutions has exponent 1/3:

(1) Every weak solution u to the Euler
equations with Hölder continuity
exponent α> 1

3 conserves energy.

(2) For any α< 1
3 there exists a weak solution

u ∈Cα which does not conserve energy.



Threshold regularity
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Weak solutions to the Cauchy problem


∂tu+div (u⊗u)+∇p= 0, x ∈Ω,
divu= 0,
u|t=0 =u0.

A divergence free vector field u ∈L∞
t L2

x is a global admissible
weak solution if

Ï
∫ ∞

0

∫
Ω

(
u ·∂tϕ+u⊗u :∇ϕ)

dxdt=−
∫
Ω

u0 ·ϕ(·,0)dx

for every test function ϕ ∈C∞
c with divϕ= 0.

Ï
∫
Ω

1
2
|u(·, t)|2 dx≤

∫
Ω

1
2
|u0(·)|2 dx for every t≥ 0.



Non-uniqueness and density of ‘wild’ data

Theorem (Székelyhidi-Wiedemann ’12, Chen-Vasseur-Y. )
For any ε> 0 and any u0 ∈L2(Tn), there exist infinitely many
v0 ∈L2(Tn) satisfying

‖v0 −u0‖2
L2(Tn) < ε,

such that for each such initial value v0, there exist infinitely many
global admissible weak solutions v to the incompressible Euler
equations.

Ï Construct a sub-solution by vanishing viscosity limit from Navier-Stokes.

Ï Leray-Hopf theory for N.-S.
Ï Euler equations: No results of global existence of weak solutions.
Ï Inviscid limit (µ→ 0): weak limit is not commutative with nonlinear

term.

Ï Applying C.I. to sub-solution to generate ∞ many weak solutions.



Isentropic Euler system



Weak solutions

ρt +div(ρu)= 0,

(ρu)t +div(ρu⊗u)+∇P= 0

Ï ∫ ∞
0

∫
Ω

(
ρ∂tϕ+V ·∇ϕ)

dxdt=−∫
Ωρ

0ϕ(·,0)dx
Ï ∫ ∞

0

∫
Ω

(
V ·∂tϕ+ V ⊗V

ρ
:∇ϕ+ργdivϕ

)
dxdt

=−
∫
Ω

V0 ·ϕ(·,0)dx

where V = ρu.

Ï ∫
Ω

( |V|2
2ρ + ργ

γ−1

)
dx≤ ∫

Ω

( |V0|2
2ρ0 + (ρ0)γ

γ−1

)
dx.



Related works

Ï The proof relies on the Convex integration machinery developed by De

Lellis–Székelyhidi.

Ï Two directions of the isentropic flow

Ï One direction, pioneered by Chiodaroli, considers a wide class of

initial densities. Some extensions, Luo–Xie–Xin, and Feireisl.
Ï The other direction, pioneered by Chiodaroli–De Lellis–Kreml,

focuses on initial values being Riemann data.
Ï Extensions of both strategies have been studied for the full Euler

system, see Chiodaroli–Feireisl–Kreml, Al

Baba–Klingenberg–Kreml–Mácha–Markfelder.

Ï Without energy condition, non-unique solutions can be constructed for

any fixed initial values, see Abbatiello–Feireisl.

Ï A natural problem consists in studying the size of the class of initial

values leading to non-unique solutions.



Riemann data

Theorem (Chiodaroli- De Lellis-Kreml,CPAM.)
For γ= 2 in 2D, there are infinitely many bounded admissible
solutions with the initial data

(ρ0,u0)=
{

(ρ−,u−), if x2 < 0
(ρ+,u+), if x2 > 0.

Ï Admissible condition: energy inequality in distribution sense.

Ï Initial data is Riemann data.

Ï Key idea: sub-solutions+ convex integral.



Key idea of CDK

P−
P+

P1

P2

· · · · · ·

PN

t

x2

(ρ0(x), v0(x)) = (ρ−, v−) (ρ0(x), v0(x)) = (ρ+, v+)

Ï Classical theory in 1D conservation laws: Rankine-Hugoniot conditions.

Ï Sub-solutions: (ρ̄, ū)=∑+−(ρ,u)1Pi

Ï Oscillation lemma: Let ū⊗ ū− Ū < C
n Id, there exists infinitely many

bounded maps (u,U) ∈L∞, such that

Ï u, U vanish identically outside Ω,

Ï divu= 0, ut +divU = 0;

Ï (ū+u)⊗ (ū+u)− (Ū+U)= c
n Id.

Ï Solutions: (ρ,u)= (ρ̄, ū+u).



Our further understanding from CDK

Ï Note that u= ū+u=mean flow+fluctuation.
Ï This motivates us to reformulate the system for sub-solutions as

ρt +div(ρū)= 0,

(ρū)t +div(ρū⊗ ū+ P̄In +ρR)= 0.

where the Reynolds stress

R=u⊗u− ū⊗ ū+ (ργ− ρ̄γ)In

is symmetric and positive semidefinite.



Main result

Theorem (Chen-Vasseur-Y. , Adv. Math, 2021)
Whenever 1< γ≤ 1+ 2

n , for any ε> 0 and any (%0,U0) such that
E(%0,U0) ∈L1(Tn), there exist infinitely many (ρ0,V0) satisfying

ρ0 > 0, E(ρ0,V0) ∈L1(Tn),

‖ρ0 −%0‖γLγ(Tn) +
∥∥∥∥∥ V0√

ρ0
− U0√

%0

∥∥∥∥∥
2

L2(Tn)

< ε,

such that, for each of such initial values (ρ0,V0), there exist
infinitely many global admissible weak solutions (ρ,V) to the
isentropic Euler equations.



Remarks: ∞ many solutions

Ï The most interesting range of γ in physics is 1< γ≤ 5
3 in 3D.

Ï This result can be regarded as a compressible counterpart of the one

obtained by Szekelyhidi–Wiedemann (ARMA, 2012) for incompressible

flows.

Ï The admissibility condition is defined in its integral form. In particular,

the energy is decreasing in time t.
Ï The energy equality could be hold under particular conditions, see

Y.(ARMA,2017), R. Chen-Y.(JMPA,2019),
Akramov-Debiec-Skipper-Wiedemann (Anal. PDE, 2020),
Feireisl-Gwiazda-Swierczewska-Gwiazda-Wiedemann(ARMA,2017)

.........



Key steps

Ï Two steps: the construction of subsolutions, and the convex integration of

these subsolutions to obtain actual solutions.
Ï Can we construct a sub-solution as follows

ρt +div(ρu)= 0,

(ρu)t +div(ρu⊗u+P(ρ)In +ρR)= 0?

Ï Vanishing viscosity limits from the Navier-Stokes equation.
Ï Weak limits for nonlinear term can produce R.

Ï We need a suitable convex integral tool?

Ï a topological Bairé category argument.

Ï The energy-compatible subsolution (ρ,V,R), denoting

U := (V ⊗V − Id|V|2/n)/ρ, the oscillatory perturbations (Ṽ,Ũ), readily

generate (ρ,V + Ṽ) as solutions to the the isentropic Euler system.



Existence of NS

Proposition
Fo any γ> 1, there exists the global weak solution (ρν,Vν) to

∂tρν+divVν = 0,

∂tVν+div
(

Vν⊗Vν
ρν

+p(ρ)In

)
= div

(p
νρνSν

)
,

wherepνρνSν := νρνDvν with Dvν :=
(∇vν+∇Tvν

2

)
and Vν = ρνvν.

Ï This weak solution was constructed by Vasseur-Y. and Bresch-Vasseur-Y. .

Ï The standard theory need γ> 3
2 in the framework of Lions-Feireisl.

Ï The most interesting range of γ in physics is 1≤ γ≤ 5
3 .



Vanishing viscosity limits

Ï As ν→ 0, up to a subsequence,

(ρν,Vν)* (ρ,V) weakly in L∞(R+;Lγ(Tn))×L∞(R+;L
2γ
γ+1 (Tn)),

which defines

R := lim
ν→0

Vν⊗Vν
ρν

− V ⊗V
ρ

, r := lim
ν→0

p(ρν)−p(ρ) in D′.

Ï |Vν|2
ρν

* |V|2
ρ +TrR, P(ρν)*P(ρ)+r, by energy inequality, we have∫

Tn

(
E(ρ,V)+ 1

2
TrR+ r

γ−1

)
dx≤E0.

Ï Then there exist a subsolution (ρ,V,R,r) of the compressible Euler

equations with energy inequality, called (E 0,T)-energy compatible

subsolution.



Regularity and positivity enhancement

Ï Subsolutions via v.v. are rough and R+rIn may degenerate.

Ï Smoothing via convolution.

Ï Enhancing positivity via convex combination of (E 0,T)-energy compatible

subsolutions.

Ï The above two procedures respect energy compatibility because of

convexity.

Ï Therefore we are left to consider convex integration from smooth energy

compatible subsolutions with positive definite total defect matrix R+rIn.
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Oscillation lemma

Proposition (Chen-Vasseur-Y., 2021.)
There exist infinitely many Ṽ and traceless Ũ (as oscillatory perturbations), both
supported in Ω, such that in Rn ×R+:{

divṼ = 0,

∂tṼ +divŨ = 0,

while
(V + Ṽ)⊗ (V + Ṽ)

ρ
− (U+ Ũ)=

(
|V|2
nρ

+q

)
In

is achieved as to eliminate the Reynolds stress R := qIn.

Energy injection
(ρ,V + Ṽ) Euler solution.

|V + Ṽ|2
ρ

= |V|2
ρ

+ trR.

1
2 trR is pumped into the kinetic energy density through C.I..



Ï The subsolutions 
∂tρ+divV = 0,

∂tV +div
(

V ⊗V
ρ

+p(ρ)Id+R
)
= 0.

Ï There exist infinitely many Ṽ and traceless Ũ (as oscillatory
perturbations): {

divṼ = 0,

∂tṼ +divŨ = 0,

while
(V + Ṽ)⊗ (V + Ṽ)

ρ
− (U+ Ũ)=

(
|V|2
nρ

+q

)
Id,

is achieved as to eliminate the Reynolds stress R := qId.

Ï The energy-compatible subsolution (ρ,V,R), denoting

U := (V ⊗V − Id|V|2/n)/ρ, the oscillatory perturbations (Ṽ,Ũ), readily

generate (ρ,V + Ṽ) as solutions to the the isentropic Euler system.



Compensation for potential energy

E 0,W0 = (ρ0,V 0,R0, r0)⇒ (E 0,T)-compatible subsolution W1

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W1 = (ρ,V ,R, r)

C.I. ⇒ (ρ, V̂ )



Compensation for potential energy

E 0,W0 = (ρ0,V 0,R0, r0)⇒ (E 0,T)-compatible subsolution W1

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W1 = (ρ,V ,R, r)

Energy E(ρ,V̂ )= E(ρ,V )+ 1
2 trR

= E(ρ,V )+ 1
2 trR+ n

2 r

C.I. ⇒ (ρ, V̂ )



Compensation for potential energy

E 0,W0 = (ρ0,V 0,R0, r0)⇒ (E 0,T)-compatible subsolution W1

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W1 = (ρ,V ,R, r)

Energy E(ρ,V̂ )= E(ρ,V )+ 1
2 trR

= E(ρ,V )+ 1
2 trR+ n

2 r

Energy 6=: E(ρ,V̂ ) v.s. E(ρ,V )+ 1
2 trR+ r

γ−1

C.I. ⇒ (ρ, V̂ )



Compensation for potential energy

E 0,W0 = (ρ0,V 0,R0, r0)⇒ (E 0,T)-compatible subsolution W1

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W1 = (ρ,V ,R, r)

Energy E(ρ,V̂ )= E(ρ,V )+ 1
2 trR

= E(ρ,V )+ 1
2 trR+ n

2 r

Energy 6=: E(ρ,V̂ ) v.s. E(ρ,V )+ 1
2 trR+ r

γ−1

⇒ need compensation for

potential energy density

C.I. ⇒ (ρ, V̂ )

1< γ≤ 1+ 2
n



Compensation for potential energy

E 0,W0 = (ρ0,V 0,R0, r0)⇒ (E 0,T)-compatible subsolution W1

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W1 = (ρ,V ,R, r)

rc(t)=
(

2
n(γ−1)|Tn|

)∫
Tn r(t, x)dx

Consider (E 0,T)-compatible subsolution

W = (ρ,V ,R, r+rc)



Compensation for potential energy

E 0,W0 = (ρ0,V 0,R0, r0)⇒ (E 0,T)-compatible subsolution W1

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W1 = (ρ,V ,R, r)

rc(t)=
(

2
n(γ−1)|Tn|

)∫
Tn r(t, x)dx

Consider (E 0,T)-compatible subsolution

W = (ρ,V ,R, r+rc)
Issue: bump-up of initial energy

E(ρ0,V 0)−→ E(ρ0,V 0)+ 1
2 trR



Double convex integration

E 0,W0 = (ρ0,V 0,R0, r0)⇒W = (ρ,V ,R, r+rc)

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W = (ρ,V ,R, r+rc)

t = t0 ¿ 1

(ρ,V̂ )= (ρ0,V 0) (ρ,V̂ )= (ρ,V )(t0)

close in natural norms



Double convex integration

E 0,W0 = (ρ0,V 0,R0, r0)⇒W = (ρ,V ,R, r+rc)

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W = (ρ,V ,R, r+rc)

t = t0 ¿ 1
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E 0 = ∫
E(ρ,V̂ ) a.e. t



Double convex integration
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t = t0 ¿ 1t = t̃
(ρ0,V 0) (ρ,V̂ )(t̃)

new initial

(ρ̃0
ε ,Ṽ 0

ε )

close in energy norm

E 0 = ∫
E(ρ̃0

ε ,Ṽ 0
ε )



Double convex integration

E 0,W0 = (ρ0,V 0,R0, r0)⇒W = (ρ,V ,R, r+rc)

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W = (ρ,V ,R, r+rc)

t = t0 ¿ 1t = t̃
(ρ0,V 0) (ρ,V̂ )(t̃)

new initial

(ρ̃0
ε ,Ṽ 0

ε )

close in energy norm

E 0 = ∫
E(ρ̃0

ε ,Ṽ 0
ε )

Note: ∞ many choices for t̃ ⇒∞ many initial data (ρ̃0
ε ,Ṽ 0

ε )



Double convex integration

E 0,W0 = (ρ0,V 0,R0, r0)⇒W = (ρ,V ,R, r+rc)

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W = (ρ,V ,R, r+rc)

t = t0 ¿ 1

C.I. ⇒ (ρ,V )C.I. ⇒ (ρ, V̂ )

same at t0



Double convex integration

t = t̃
(ρ̃0

ε ,Ṽ 0
ε ),E 0

E 0,W0 = (ρ0,V 0,R0, r0)⇒W = (ρ,V ,R, r+rc)

Say ρ > 0, R =R+ rIn > 0

t = 0 t = T

E 0,W0 E 0,W = (ρ,V ,R, r+rc)

t = t0 ¿ 1t = t̃
(ρ̃0

ε ,Ṽ 0
ε ),E 0

C.I. ⇒ (ρ,V )C.I. ⇒ (ρ, V̂ )

(ρ, V̂ )(t+ t̃) (ρ,V )(t+ t̃)(ρ̃ε,Ṽε)=




