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Incompressible Euler equations

> A solution (u,P) to the incompressible Euler equations is such that

dru+diviueuw)+VP=0, xeT3,
diva=0.

If the solution is sufficiently smooth, say C1, then the total kinetic energy

E(u):= 1] lu(t,x)% dx
2 Jr3

is conserved, and any solution is uniquely determined by the initial data.
> A folklore conjecture: Uniqueness should fail when ue C% for some a <1,
which is highly linked to Onsager’s conjecture.
» Question: Can we construct +oo many global admissible weak solutions?

» It will narrow down further the class of weak solutions to single out
physical relevant solutions of the Euler equations for the

uniqueness.
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» Roughly speaking, enough regularity allows us to control
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» Roughly speaking, enough regularity allows us to control
convective term and to do integration by parts.

» The term to control is the total energy flux
I[I={(div(u®u),u) ~ <(V1/3u e V3u): V1/3u>

Thus the quantity VY3 13 appears. Any better regularity
would be sufficient to justify integration by parts to show
that the flux IT=0.



Onsager’s Conjecture [Onsager ’49]

The threshold Hoélder regularity for the
validity of the energy conservation of weak
solutions has exponent 1/3:

(1) Every weak solution u to the Euler
equations with Holder continuity
exponent a > % conserves energy.

(2) For any a < % there exists a weak solution
u € C% which does not conserve energy.



Threshold regularity

energy not conserved energy conserved
Scheffer '93 Eyink 94
Shnirelman ’97 Constantin-E-Titi ’94
De Lellis-Székelyhidi 12 Onsager Duchon-Robert 00
B-DL-I-S’13 s
1°16, B-DL-S-V 17 ¢

—

non-uniqueness
C 1

De Lellis-Székelyhidi '09, ’10
Daneri ’14
Daneri-Székelyhidi ’17
Daneri-Runa-Székelyhidi 20

uniqueness

based on a Baire category argument



Weak solutions to the Cauchy problem
divu =0,

{ Jru+div(ueu)+Vp=0, xeQ,

Wls=g = u’.

A divergence free vector field u € L;’OL,% is a global admissible
weak solution if

o0
> f / (u-0;p+udu:Vey) dxdt:—/ u’-(-,0)dx
0 Q Q
for every test function ¢ € C° with divg =0.

1 1
> f—lu(-,t)lzdxsf —Iuo(-)|2dx for every t=0.
Q2 Q2



Non-uniqueness and density of ‘wild’ data

Theorem (Székelyhidi-Wiedemann ’12, Chen-Vasseur-Y. )
For any € >0 and any u® € L2(T"), there exist infinitely many
v0 € L2(T") satisfying

0

02
”U —u ”L2(T”)<E’

such that for each such initial value v°, there exist infinitely many
global admissible weak solutions v to the incompressible Euler
equations.

» Construct a sub-solution by vanishing viscosity limit from Navier-Stokes.

» Leray-Hopf theory for N.-S.
» Euler equations: No results of global existence of weak solutions.
» TInviscid limit (u — 0): weak limit is not commutative with nonlinear

term.

> Applying C.I. to sub-solution to generate co many weak solutions.



Isentropic Euler system



Weak solutions

ot +div(pu) =0,
(pu); +div(pu®u)+ VP =0

> J5° Jo (00:p +V - V) dxdt = — [, p°p(-,0)dx

>
f f(V'6t<p+V®V
0 Q

— f V0. o(-,0)dx
Q

Vo +p7 diV(p) dxdt

WhereV:pu
> fQ(IVF )dx fQ(|V°|2 (ﬁ){)dx.



Related works

» The proof relies on the Convex integration machinery developed by De
Lellis—Székelyhidi.
» Two directions of the isentropic flow
» One direction, pioneered by Chiodaroli, considers a wide class of
initial densities. Some extensions, Luo—Xie—Xin, and Feireisl.
» The other direction, pioneered by Chiodaroli-De Lellis—Kreml,
focuses on initial values being Riemann data.
> Extensions of both strategies have been studied for the full Euler

system, see Chiodaroli—Feireisl-Kreml, Al
Baba—-Klingenberg—Kreml-Macha—Markfelder.

» Without energy condition, non-unique solutions can be constructed for
any fixed initial values, see Abbatiello—Feireisl.
> A natural problem consists in studying the size of the class of initial

values leading to non-unique solutions.



Riemann data

Theorem (Chiodaroli- De Lellis-Kreml,CPAM.)

For y =2 in 2D, there are infinitely many bounded admissible
solutions with the initial data

0.0y (p—u), ifxe<0
(0"u )_{ (p+,u4), ifx2>0.

» Admissible condition: energy inequality in distribution sense.
» Initial data is Riemann data.

» Key idea: sub-solutions+ convex integral.



Key idea of CDK

~ [ oY -
(), 0°(z)) = (p_.v_) (), v(x)) = (ps.vy)
» Classical theory in 1D conservation laws: Rankine-Hugoniot conditions.
> - 1 c(p.a)=Y1
Sub-solutions: (p, @) Z_(p,u)ﬂpi

» Oscillation lemma: Let a®a—U < %Id, there exists infinitely many
bounded maps (u,U) € L*°, such that

» u, U vanish identically outside Q,
> divu=0, u,+divU = 0;
> @+we@+w-(U+U)=<Id.

» Solutions: (p,u) = (p,a+u).



Our further understanding from CDK

» Note that u =@ +u=mean flow + fluctuation.

» This motivates us to reformulate the system for sub-solutions as

oz +div(pua) =0,
(o) +div(pa ® @ + PI,, + pR) = 0.

where the Reynolds stress
R=ueu-usua+(p’ -p"I,

is symmetric and positive semidefinite.



Main result

Theorem (Chen-Vasseur-Y. , Adv. Math, 2021)

Whenever 1<y <1+ %, for any € >0 and any (0°,U°) such that
E(QO, U®) e LY(T™), there exist infinitely many (pO,VO) satisfying

p°>0, E(°V%eLl(T™),

2
0 0
”pO _ 00”1?:7(_"%) + V_O — LO <Eg,
Ve Vel

such that, for each of such initial values (p°,V?), there exist
infinitely many global admissible weak solutions (p,V) to the
isentropic Euler equations.



Remarks: co many solutions

» The most interesting range of y in physicsis 1 <y < g in 3D.
This result can be regarded as a compressible counterpart of the one
obtained by Szekelyhidi-Wiedemann (ARMA, 2012) for incompressible

flows.

» The admissibility condition is defined in its integral form. In particular,
the energy is decreasing in time ¢.

» The energy equality could be hold under particular conditions, see
Y.(ARMA,2017), R. Chen-Y.(JMPA,2019),
Akramov-Debiec-Skipper-Wiedemann (Anal. PDE, 2020),
Feireisl-Gwiazda-Swierczewska-Gwiazda-Wiedemann(ARMA,2017)



Key steps

» Two steps: the construction of subsolutions, and the convex integration of
these subsolutions to obtain actual solutions.
» Can we construct a sub-solution as follows
ot +div(pu) =0,
(pw); +div(pu®u +P(p)I;, + pR) = 0?

» Vanishing viscosity limits from the Navier-Stokes equation.

» Weak limits for nonlinear term can produce R.
» We need a suitable convex integral tool?
> a topological Bairé category argument.

» The energy-compatible subsolution (p,V,R), denoting
U:=(VeV-Id |V|2/n)/p, the oscillatory perturbations (17, U ), readily

generate (p,V + V) as solutions to the the isentropic Euler system.



Existence of NS

Proposition
Fo any y > 1, there exists the global weak solution (pv,Vy) to

dspy +divVy =0,

VyeV. .
e DL | = div (7B7Sy),

v

0;Vy +div

VUV+VTUV
2

where/VpySy :=vpyDvy with Duy := and Vy = pyvy.

» This weak solution was constructed by Vasseur-Y. and Bresch-Vasseur-Y. .

» The standard theory need y > % in the framework of Lions-Feireisl.

» The most interesting range of y in physicsis 1<y < g



Vanishing viscosity limits

> Asv— 0, up to a subsequence,

2y
(pv,Vv) = (p,V) weakly in L®(R4;LY(T™)) x L°(R4; L7+ (T"),

which defines
VyeV, VeV
m-———,

E = li r.= lim —p(p mn @ .
b _l | - —l | +TI‘R P(p ) P(p) T by ener lnequahty we haVe
o o s 4 ’ gy >

1
f (E(p,V)+ TR+ —— | dx <E.
™ 2 y-1

» Then there exist a subsolution (p,V,R,r) of the compressible Euler
equations with energy inequality, called (&9, T)-energy compatible

subsolution.
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Regularity and positivity enhancement

» Subsolutions via v.v. are rough and R + I, may degenerate.
» Smoothing via convolution.

» Enhancing positivity via convex combination of (é"O,T)-energy compatible
subsolutions.
» The above two procedures respect energy compatibility because of

convexity.

» Therefore we are left to consider convex integration from smooth energy

compatible subsolutions with positive definite total defect matrix R +rl,.



Oscillation lemma

Proposition (Chen-Vasseur-Y., 2021.)

There exist infinitely many V and traceless U (as oscillatory perturbations), both
supported in Q, such that in R™ x R;.:

divV =0,
{atV+diva= 0,
while
V+V)e(V+V) Ui~ (@ +q)In
np
is achieved as to eliminate the Reynolds stress R := ql,.
Energy injection
(p,V +V) Euler solution.
V+Vi2 V2
T
%trR is pumped into the kinetic energy density through C.I..

+trR.



» The subsolutions

0tp+divV =0,

atV+div(V®V +p(p)Id+R]| =0.

> There exist infinitely many V and traceless U (as oscillatory
perturbations): N
divV =0,
0V +divU =0,

while B B
V+V)e(V+V)

0

is achieved as to eliminate the Reynolds stress R :=qld.

2
—(U+I~J):(&+q)ld,
np

» The energy-compatible subsolution (p,V,R), denoting
U :=(VeV -Id|V|2/n)/p, the oscillatory perturbations (V,U), readily

generate (p,V + V) as solutions to the the isentropic Euler system.
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Compensation for potential energy

& WO = (pO,VO,%O,rO) = (&9, T")-compatible subsolution W;
Say p>0, R=%+rl,>0

&0, WO & W1 =(p,V,R,r)

v

t=0 CL = (p,V)

Energy E(p,V)=E(p,V)+ %trR
=E(p,V)+ 3t + r

e — — ¢ —

Energy #: E(p,V) vs. E(p,V)+3tr®+ -5
l<ys1+2
= need compensation for

potential energy density
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Compensation for potential energy

& WO = (pO,VO,%O,rO) = (&9, T")-compatible subsolution W;
Say p>0, R=%+rl,>0

&0, WO & W1 =(p,V,R,r)

t=0
re(® = (527 ) fyn 78,00 dx

Consider (&°, T)-compatible subsolution
W=(0,V,%,r+r.)
Issue: bump-up of initial energy

E(°, VY —E(@° V% +itR



Double convex integration

gO,WO =(pO,V0,%O,rO)=> W:(p,V’@,r+rC)
Say p>0, R=%+rl,>0

&0, wo EOW =(p,V,R,r+r.)
d

t - 0 Tt =tox1
(0, V)= (0%, V%) '(p, V) =(p,V)(t0)

e

close in natural norms

e — — —

~

N

\J



Double convex integration

EO WO =(p° VO %0 rO=>W=(p,V,%,r+r.)
Say p>0, R=%+rl,>0

&0, wo EOW =(p,V,R,r+r.)
d

t=0

T
CL= (p,V) !
0 .
&°=[E(p,V) ae. t |

e — — —

v



Double convex integration
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Double convex integration

EO WO =(p° VO %0 rO=>W=(p,V,%,r+r.)
Say p>0, R=%+rl,>0

&0, wo EOW =(p,V,R,r+r.) \
4 ¢ >

°,v9 (0, V(D ! |

new initial [ |

P2, V0 '

7

close in energy norm
fE( ~0 VO)

Note: oo many choices for # = co many initial data (5‘3,\760)



Double convex integration

gO,WO =(pO,V0,%O,rO)=> W:(p,V’@,r+rC)
Say p>0, R=%+rl,>0

&0, wo EOW =(p,V,R,r+r.)
d

t;O t=tyx1 t=T

|
4 »
* ¢ >
! 1
! 1
! 1
! 1
|

CIL = (p,V) /v. CL = (p,V)

same at £



Double convex integration

EOWO=(p° VO %0 rO=>W=(p,V,%,r+r.)
Say p>0, R=%+rl,>0

&0, wo EOW =(p,V,R,r+r.) \
| 1 é " -
t%O tzi‘ll lt=tg<1 It =
L (PVD),8°) ! |
I wle |

|

|

: BV = (0, V)E+D| (0, V4D
| |

|

N | —
<—CL> (p,V)—>= CL > (p,V)






