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Abstract

Gaussian fields are ubiquitous in probability as they are scaling limits of many
natural objects, and in applied science as they are very useful in modeling
natural phenomenon. In this document, we study geometric features of smooth
Gaussian fields, like measure of level sets and structure of critical points of the
field. Large scale geometry, i.e. studying geometric observables in a domain
where the domain size goes to infinity, is of particular interest.

In the first chapter, we give some background on smooth Gaussian fields,
including motivation. We formally define smooth Gaussian fields, state basic
properties like existence using Kolmogorov’s theorem, Bochner’s theorem etc.
Then we briefly explain connections to other topics in mathematics including
percolation theory, quantum chaos, real algebraic geometry.

Next, we study measure of level sets of stationary Gaussian fields. This quan-
tity has been researched extensively in the last 20 years, using tools like Kac-
Rice formula, Wiener chaos expansion [Wig22]. We now have a good under-
standing of expectation, fluctuation in specific models like random harmonics
on sphere. In the second chapter, we ask, given two Gaussian fields which are
coupled closely, how close are their measures of level sets in a domain. Here
we bring in novel ideas (in this context) from geometric analysis to answer this
question. We prove convergence of Hausdorff measure of level sets of smooth
Gaussian fields when the levels converge. Given two coupled stationary fields
f1, f2 , we estimate the difference of Hausdorff measure of level sets in expec-
tation, in terms of C2-fluctuations of the field F = f1 − f2. The main idea in
the proof is to represent difference in volume as an integral of mean curvature
using the divergence theorem. This approach is different from using Kac-Rice
type formula as main tool in the analysis. This chapter is based on joint work
with Dmitry [BH23].

Now, in third chapter we study critical point structure of smooth Gaussian
fields. Critical points of smooth fields give important information on landscape
of the field, and on topology of level sets. For example, topology of level sets
remain unchanged between two levels if there’s no critical point in the middle,
thanks to Morse theory. In applied sciences like astronomy, medical imaging,
extrema and critical points are readily observed, hence crucial to analyse them.
In this article, we consider the point process of local maxima above a level
u(R) in a growing region [0, R]d. We show that this point process converges
weakly to Poisson point process in the limit R → ∞. In the literature, high
excursion sets of many smooth and non-smooth Gaussian process of decaying
correlation are well studied [LLR83]. Also, for Gaussian processes with some
Markov property like Brownian motion, Gaussian free field, high points (after
suitable rescaling) have been shown to converge to Poisson process. But in
all processes considered, to the best of our knowledge, the threshold level is
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comparable to that of expected maxima in the region. Here, we show that, for
any arbitrary threshold u(R) → ∞, we observe Poisson process in the weak
limit. Proof relies on the classical observation that simple point processes are
characterised by avoidance probabilities (i.e. P(η(B) = 0) for Borel sets B).
Then we approximate avoidance probability with excursion probability, where
the latter is well studied.

Last but not the least, appendix contains brief info on the standard tools in
this topic, like Kac-Rice formula. Part A of the appendix contains many key
lemmas and theorem which are used multiple times in chapter 3.
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Chapter 1

Preliminaries on smooth
Gaussian fields

1.1 Motivation

At the end of the 18th century, the musician and physicist Chladni noticed
that sounds of different pitch could be made by exciting a metal plate with the
bow of a violin, depending on where the bow touched the plate. The latter was
fixed only in the center, and when there was some sand on it, for each pitch
a curious pattern appeared. Some years later, it was realised that Chladni
figures correspond to zeros of eigenpairs (eigenvalues and corresponding eigen-
functions) of a wave operator. One can show that this problem can be quickly
relegated to the study of Laplace eigenfunctions.

Studying the Laplace eigenfunctions and their geometry is a classical subject
and of great interest to both mathematicians and physicists, going back to at
least 19th century. Advent of quantum mechanics in 20th century fueled this
area of mathematics further. Much of the quantum mechanics is concerned
with the eigenvalue problem for the Schrodinger equation,(

−h
2

2
∆ + V

)
ψ = Eψ (1.1)

where h is Planck’s constant, V is the potential, ψ is the wave-function, E
energy level of the wave-function. Many important questions about these in-
volve studying behaviour of “typical” eigenfunctions, where we are lead to
Gaussian random fields. Examples of some of the models considered in this
context include Random Plane Waves (RPW) (which are random eigenfunc-
tions of laplacian in R2), Gaussian random linear combination of deterministic
eigenfunctions.

Apart from this, Gaussian fields appear naturally in many practical applica-
tions. Especially when one encounters random surfaces in real life, like pho-
tographs, television pictures, topographic maps, atmospheric pressure charts,
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(a) South crystal in Oxford
maths institute

(b) Chladni figures

Figure 1.1: (a) The crystal is a triangulation of the amplitude of the first
overtone of that domain. (b) Sand accumulating on nodes corresponding to
different resonating frequencies

studying statistical properties of the contours the surface is helpful [Swe62].
Random fields have found some applications in areas as diverse as oceanogra-
phy [LH57], cosmology [BBKS86], medical imaging [WMN+96].

1.2 Smooth Gaussian fields

Let (Ω,F ,P) be a probability space. Let V ⊂ Rn be open set. A function
f : V × Ω → R is called a Gaussian function (more commonly, a Gaussian
field) if

1. for each x ∈ V , the mapping ω → f(x, ω) is measurable as a mapping
from (Ω,F) to (R,B(R)) ;

2. for each finite set of points x1, x2, . . . xn ∈ V and for each c1, . . . cn ∈ R,
the sum

∑
j cjf(xj, ω) is a Gaussian r.v. (being degenerate is allowed).

Let k ∈ N. The Gaussian function f is called Ck-smooth if

3. for almost every ω ∈ Ω, the function x → f(x, ω) belongs to the space
Ck(V ).

Given a Gaussian field f : V → R (which is a common abuse of notation),
define its covariance kernel to be K(x, y) := E[f(x)f(y)] for x, y ∈ V .

Theorem 1.2.1 (Kolmogorov’s theorem, [NS16]). Let k ∈ N. Suppose that
K : V × V → R is a positive definite symmetric function of class Ck,k(V × V )
and, in addition, that

max
|α|,|β|≤k

sup
x,y∈V

|∂αx∂βyK(x, y)| <∞.

2



Then there exists a (unique up to an equivalence of distribution) Ck−1 Gaussian
function f on V with the covariance kernel K.

This says, if we have a ‘nice/smooth’ covariance kernel then we’ll get ‘nice/smooth’
enough field. We have plenty of examples of (interesting) positive definite func-
tions, such as the Gaussian kernel (e−ax2

), Sinc kernel (sinx/x) etc. Without
loss of generality, we assume that all Gaussian fields in this article are centred
(i.e. Ef(x) = 0,∀x) because we can subtract a deterministic function to get
another Gaussian field.

We describe three ways to think about Gaussian fields. The first one is more
‘probabilistic’ way. A Gaussian field is a stochastic process on an index set
V , where the random variables fx = f(x), x ∈ V are jointly Gaussian. We
know that, thanks to Kolmogorov’s theorem, such processes are determined
by pairwise covariances K(x, y) = E[f(x)f(y)]. While it seems that the na-
ture/topology of the index set is irrelevant from this viewpoint, when we de-
mand nicer structure on the field it becomes important.

A more ‘analytic’ approach to Gaussian fields in the following. We can think
of f(x) as function drawn at random from some space of functions. More or
less equivalently, it can be also thought as a random variable corresponding
to a Gaussian measure on some function space. One canonical (and simplest)
way to ‘write down’ a Gaussian function is a random linear combination of
deterministic functions, usually written as

f(x) =
∑

aiψi(x)

where ai’s a re i.i.d. standard normal variables and {ψi(x)} are orthonormal
basis of that function space.

We can switch from one viewpoint to the other in many cases. Consider
f =

∑
aiψi as a formal series and compute E[f(x)f(y)] formally. We get,

K(x, y) =
∑

ψi(x)ψi(y).

The other direction is bit more involved. Call a continuous Gaussian field on Rn

stationary or translation invariant if its covariance kernelK(x, y) depends only
on x− y, say K(x, y) = κ(x− y). By Bochner’s theorem, κ can be written as
a Fourier transform of some finite symmetric (means µ(−A) = µ(A)) positive
Borel measure measure ρ on Rn, i.e.,

κ(x) =

∫
Rn

e2πi(λ·x)dρ(λ).

Call the measure ρ spectral measure of the field f. Thinking of a Gaussian field
in terms of its spectral measure is more geometric while that of kernels are
more analytic. And most important examples of Gaussian fields that we’re
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interested in are stationary anyways. Now the field is given by the Fourier
transform of the white noise on the spectral measure. One description of
white noise on the spectral measure is the following.

Consider the Hilbert space L2
sym(ρ) = {ψ ∈ L2(ρ) : ψ(−t) = ¯ψ(t)}. Now,

the Fourier transform of symmetric functions will be real valued, and forms
a Hilbert space, call it H = FL2

sym(ρ) with inner product inherited from
L2 space. A white noise W on the measure ρ (See appendix) would be an
isonormal process on H, i.e. an inner product preserving map from H taking
values in a Gaussian Hilbert space. So our field has a representation,

f(x) = W (e2πix·t).

Now by considering orthonormal basis of H (which are Fourier transforms of
an orthonormal basis of L2

sym(ρ)), we can recover ‘analytic’ picture of the field,
at least on formal level.

To think of the field in terms of spectral measure, let’s start with a simple
example. When the spectral measure is a two point measure, the field will be
a sine wave in the direction of line passing through these points with a Gaus-
sian amplitude, variance being the measure of these points and wavelength as
inverse of distance from origin. That is, if µ = (δt + δ−t)/2 where t ∈ R2 then
corresponding field is f(x) = A cos (2πx · t). Now if we have a spectral mea-
sure supported on 2n points, then the field will be a random super-imposition
of sine waves in the direction of these points with amplitudes’ variance pro-
portional to the measure at those points. In [BM22], Belyaev and Maffucci
came up with a coupling of fields which are close when the spectral measures
are close, with high probability. So we can approximate fields by considering
approximations of spectral measures, which gives us more geometric picture
at times.

Please refer to [AT09], [AW09], and appendix of [NS16] for more on smooth
Gaussian fields.

1.3 Connections to other topics in maths

Now we describe very briefly some topics in maths which are related to smooth
Gaussian fields.

Percolation theory: Let us first describe percolation theory briefly. One of
the simplest and non-trivial percolation model is Bernoulli bond percolation.
Consider the nearest neighbor graph of the planar lattice Z2. Remove every
edge with probability p ∈ [0, 1], independently of each other. We are interested
in the large scale connectivity property of the random graph thus obtained.
One of the first questions we ask about a percolation model is whether there
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is an infinite cluster. Let θ(p) be the probability that, say, the origin is in an
infinite cluster and define pc := infp∈[0,1]{p : θ(p) > 0}, the critical probability.

Many natural questions crop up immediately, some of them being: 1) Is pc
non-trivial? 2) Is there an infinite cluster at p = pc? 3) If 0 < pc < 1, how
does the phase transition occurs? 4) When θ(p) = 0, what is the typical size
of clusters?
All four of the above questions are well understood in the case of planar
Bernoulli bond percolation, thanks to the analysis available from consider-
ing dual graphs. But some of the more sophisticated questions are yet to be
fully answered, like is scaling limit of this model (if exists) conformally invari-
ant at p = pc? For example, when you take the mesh size of the lattice to zero,
are crossing events conformally invariant? It is conjectured that the critical
percolation is conformally invariant in the scaling limit, independent of the
planar lattice structure. Smirnov, in his celebrated paper [Smi01], answered it
for triangular lattices.

We can ask similar questions as above in the context of smooth Gaussian fields.
The tools/techniques used in discrete models of percolation often translate di-
rectly or have an analogy in this setting, of course presenting lot of additional
challenge sometime. A notable conjecture in this regard is one made by Bo-
gomolny and Schmidt in [BS02], which offers a bond percolation model to
random plane waves. They argued that nodal lines (i.e. the zero set of the
field) form a square lattice, but since the nodal lines do not intersect almost
surely. So the supposed ‘ties’ can be resolved one or an another equally likely,
due to symmetry of the field. This paints a critical percolation picture of the
random planar waves. Some argued that the numericals suggested were a bit
off [BK13].

The following form of the Bogomolny-Schmidt conjecture is believed to be
true:

Conjecture 1.3.1. All large scale connectivity properties of the RPW nodal
lines and domains are the same as for the critical percolation. In particular, all
crossing events have the same scaling limits. The collection of all nodal lines
has a scaling limit which is conformally invariant and same that of critical
percolation model.

An extended version of this conjecture states that for very general class of
smooth Gaussian fields, obeying some regularity conditions, the the nodal
domains of the field should have the same large scale properties as critical
percolation clusters and excursion sets for non-zero levels should behave like
off-critical percolation clusters.

Refer [DC], [Gri99] and references therein for more percolation theory. See
[Bel22] for a survey on the relation between percolation theory and smooth
Gaussian fields.
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Figure 1.2: (Left) Bargman-Fock field sample. (Right) Gaussian ensemble of
homogeneous polynomials of degree 300. The scale is d−1/2 where d is the
degree. Picture: Dmitry Beliaev

Real algebraic geometry: The first part of Hilbert’s 16th problem asks to
analyse number of components and arrangement of an algebraic curve of degree
n. Real algebraic hyperspaces in projective spaces are well studied and it is
interesting to investigate ‘typical’ behaviour of these objects. Kostlan ensem-
bles, which is a Gaussian measure on the space of homogeneous polynomials of
degree-d (say), is one of the natural objects to consider. An important case is
the behaviour when the degree is large. Interesting percolation theoretic prop-
erties, like RSW estimates, has been observed in this model [BMW17]. Also,
Kostlan ensemble has a translation invariant local scaling limit as d → ∞,
called the Bargmann-Fock field.

Let’s define Bargmann-Fock fieldon R2 as follows

F (x) = F (x1, x2) = e−|x|2/2
∞∑

m,n=0

am,n√
m!n!

xm1 x
n
2 (1.2)

Now, this field is a scaling limit of many such Gaussian fields, especially the
ones with algebraic origins. Its spectral measure is the Gaussian measure on
R2, hence the covariance kernel has super-exponential decay at infinity (or can
be computed directly, E[F (x)F (y)] = e−|x−y|2/2). Due to this rapid decay, it is
sometimes amenable to percolation theoretic methods.

Quantum Chaos: Dynamics of a classical particle in a bounded domain (ei-
ther with some potential or no potential with reflective boundaries) is a well
studied topic in maths and physics which goes back to at least to Newtonian
era. Stability (or lack of) of these particle was of particular interest in dy-
namical systems. Consider a simple model system, that of a billiard particle.
The description of the system in the language of classical mechanics is of a
point particle moving without friction in a billiard table - a bounded planar
enclosure where the particle reflects from the boundary so that the angle of
incidence equals equals the angle of reflection. Now, a quantum mechanical
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(a) Random spherical
harmonic of high degree

(b) A closer look at random
plane wave nodal lines

Figure 1.3: Both pictures by Dmitry Beliaev

description of this system at a given instant of time includes the wave function
of the particle ψ(x, t) which vanishes at the boundary of the billiard.

We can relate the two descriptions by taking V = 0, E = 1, h = λ−1 and let-
ting h→ 0 in equation (1.1), sometimes called the semiclassical limit. In 1977
[Ber77], Berry suggested that classical behavior of the particle on a generic
billiard is characterised by local behaviour of wavefunctions in the semiclassi-
cal limit. Specifically, in the chaotic case wavefunctions behave ‘locally’(at a
certain scale) as a uniform random superimposition of monochromatic waves
in all directions, random plane wave model (RPW) as we call it now.

The RPW has the following series representation,

F (x) =
∞∑
∞

CnJ|n|(|x|)einθ (1.3)

where Ck are independent standard complex Gaussian random variables sat-
isfying C−k = C̄k and Jk is the kth Bessel function. The covariance kernel
turns out to be J0(|x|), which is an oscillating function and decays like |x|−1/2.
Now the corresponding spectral measure is the normalised arc-length on the
unit circle in R2. Hence sample functions are eigenfunctions of the Laplacian
in the plane, almost surely. Also, as mentioned above, intuitively the field is a
random interference of monochromatic waves, uniform in all direction. RPW
also appears as a scaling limit of a variety of fields, for example ‘band-limited’
functions [BW16].

In the last two decades, there has been numerous suggestions of observables
for the quantum chaos classification problem. Blum, Gnutzmann and Smilan-
sky [BGS02] suggested that nodal domain count distribution as a criterion.
Bogomonly and Schmidt [BS02] proposed a percolation model for the RPW
model which is the conjectured local behaviour of chaotic systems. It is also
worth noting that some of the observable suggested, say eigenvalue gaps, are
related to that of random matrix theory.
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Helmholtz equation: Consider (M, g) a closed Riemannian manifold of di-
mension 2 and a smooth function f : M → R. Let ∆ denote the Laplace-
Beltrami operator on the manifold. The geometry of eigenfunctions of ∆ is
great importance in the analysis of PDEs on manifolds. Also the geometry
of these manifolds is related (conjecturally in some cases) to the eigenvalue
problem, say of minimal embedded hyper-surfaces [LY82]. One of the no-
table conjectures of Yau states that length of nodal lines of the eigenfunctions
is comparable to square root of the corresponding eigenvalues when they’re
large. Specifically, ∃ cM, CM > 0 such that

cM
√
λj ≤ length(f−1

j (0)) ≤ CM
√
λj (1.4)

where (fj, λj), j ≥ 1 are eigenpairs of ∆. See [LM19] for a survey on progress
on Yau’s conjecture. We can ask whether similar estimates as (1.4) holds on an
average for various Gaussian fields model, for example random band-limited
function model.

Arithmetic random waves: The study of Laplace eigenvalues and eigen-
functions on 2-torus is linked to that of lattice points on ellipses/circles in
classical number theory. Let us define the random Gaussian Laplace toral
eigenfunctions as follows. Consider the the 2-torus T2 = R2/Z2. Now the
eigenvalues are of the form Em = 4π2m where m is a sum of two integer
squares. Let

Λ = Λm = {λ ∈ Z2 : |λ|2 = m}

be the set of lattice points on the circle
√
mS1. For the eigenvalue Em the

collection of exponentials

{e2πi⟨λ,x⟩}λ∈Λm

forms a basis for the eigenspace. Consider the following (rescaled) Gaussian
ensemble of eigenfunctions,

ψm(x) =
1

r2(m)

∑
λ∈Λm

aλe
2πi⟨λ/m,x⟩, x ∈

√
mT2

where r2(m) = |Λm| and aλ is complex Gaussian with unit variance. Now the
corresponding spectral measure is,

νm =
1

r2(m)

∑
λ∈Λm

δλ/√m

where δx is the Dirac measure on the point x. Note that this measure is
supported on 1/

√
mΛm ⊂ S1. This family of spectral measures changes in a

complicated way and does not converge as m→ ∞. However, along a generic
(i.e. density one) subsequence, it converges weak-* to the uniform measure on
S1. To the other extreme, there are subsequences (of zero density) along where
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the the measure converges in weak-* to 1/4(δ±1 + δ±i), called the Cilleruelo
measure. Cilleruelo-type fields serves as a motivation for us to study degenerate
fields in more detail.
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Chapter 2

Measure of level sets

2.1 Introduction

Studying geometrical and topological properties of the field, especially of level/
excursion sets of the field is of great interest. Particularly, functionals such
as volume of level sets, number of connected components of level sets are well
studied (see [Wig22],[NS16]). In problems involving Gaussian fields, sometimes
one needs to compare two fields, say by coupling them, when their laws are
close. Comparing geometric observables are of particular interest. We show
that, with probability close to one, difference in Hausdorff measures of nodal
sets (i.e. the zero sets) of coupled fields with ‘close’ laws is small. The main
idea in the proof is to represent difference in volumes of level sets as an integral
of mean curvature of the hypersurface using the divergence theorem. This rep-
resentation is classical in Riemannian geometry and has been used extensively
in study of minimal surfaces [Law80, Chapter 1]. The novelty is to get an
average estimate of the difference in volumes in the context of Gaussian fields.
Also, we don’t rely on Kac-Rice (or any other variation of co-area formula) for
the analysis of volume of level sets, which is a standard tool in this topic. As a
by product, we give an explicit formula for the mean curvature of level sets at
a given level. We believe that proving convergence in distribution of Hausdorff
measure of level sets can be done by following the proof idea of Kac-Rice as
presented in [AW09, Theorem 6.2]. But it might not be as straight forward as
our proof, and proving other convergences might require some new ideas.

2.2 Results

In this article, we consider smooth Gaussian fields f : Rd → R with mild
non-degeneracy conditions, of fixed dimension d ≥ 2. Call a field stationary
if the covariance kernel K(x, y) = E[f(x)f(y)] is translation invariant. Now
for stationary fields, the kernel K is a Fourier transform of a finite symmetric
Borel measure ρ, called spectral measure.
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Fix a domain D = [−R,R]d ⊂ Rd. Consider two C2-smooth Gaussian fields
f1, f2 : Rd → R and a coupling of the fields f1, f2, by abuse of notation, such
that F = f1 − f2 has the C2-fluctuations

σ2
D := sup

x∈D
sup
|α|≤2

Var[∂αF (x)].

Assumptions 2.2.1. Assume that the fields f1, f2 are

1. stationary, C2-smooth a.s.

2. non-degenerate, i.e. (fi,∇fi) has density in Rd+1 for i = 1, 2.

3. Morse functions a.s.

Let Ln denote n-dimensional Lebesgue measure. Let Hn denote the n- di-
mensional Hausdorff measure, which is scaled so that Hn([0, 1]n) = Ln([0, 1]n).
Note that by Bulinskaya lemma (see [NS16, section 5.3]), a.s. nodal sets are
sub-manifolds of Rd of co-dimension one. So we interchangeably use the terms
volume and Hausdorff measure.

Theorem 2.2.2. Let Hd−1(f−1
i (a)) denote the volume of level sets in the do-

main D. With the setup as above, we have

E|Hd−1(f−1
1 (0))−Hd−1(f−1

2 (0))| ≤ C(f1, f2)(Ld(D)
√

logR)σ
1/7
D

assuming σD is small enough (say, σD < 1). Here, the constant C(f1, f2)
depends only on the laws of the fields and not the coupling.

The factor
√
logR appearing in the above theorem is from the quantitative

version of Kolmogorov’s existence theorem for smooth Gaussian fields as stated
in [NS16, Appendix A]. Also, the exponent 1/7 in σ

1/7
D is not optimal, and can

be made close to 1/4 in the proof. We believe optimal exponent of σD is 1 due
to cancellations in the integral of mean curvature in the bulk.

We make some comments on the assumptions on the fields. We believe that
the proof of Theorem 2.2.2 works for non-stationary fields with positive lower
bounds on fluctuations of the field and its derivatives with suitable modifica-
tions but computations become tedious. Only the corollary uses the station-
arity assumption in a crucial way. Also, assumption that the fields are a.s.
Morse functions is not very restrictive and many interesting non-degenerate
fields we know are Morse functions a.s. It can be shown that stationary fields
with spectral measures containing an open set are Morse a.s. If the field is
isotropic, then also we can show that the field is Morse a.s. In particular, ran-
dom plane wave (RPW) model and Bargmann-Fock field (on Rd) are Morse
a.s.
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One such coupling of fields is available using coupling of white noises (see
[BM22]). The coupling as in [BM22] gives the following estimate for the fluc-
tuations of the field F = f1 − f2. We have,

σ2
D ≤ C(Rd + 1) inf

ρ∈P(ρ1,ρ2)

∫
(|s|2 + |t|2 + 1)2+1|s− t|2dρ(s, t)

where P(ρ1, ρ2) is the space of all symmetric couplings of ρ1 and ρ2 and C is
a absolute constant.
Now by the coupling techniques mentioned above, σD can be controlled by the
transport distances between the measures in the domain (in the general case)
or by norm of differences in spectral densities (in special cases). Let’s give an
example where this is useful. Recall that the spectral measure of random planar
waves is the uniform measure on the unit circle in R2. We can approximate this
measure, in the transport distance mentioned above, by a measure supported
on finite points. This field corresponds to a finite interference of pure sine
waves. So we can obtain quantitative bounds on the difference of lengths.

To prove Theorem 2.2.2, first we study convergence of volume of level sets
using the divergence theorem. Although expressing change in volume of a
hypersurface in normal direction in terms of mean curvature is classical as
previously mentioned, we need the version as in Proposition 2.2.3.

Proposition 2.2.3. Let f : Rd → R be a non-degenerate, C2-smooth Gaussian
field which is Morse function a.s. Let Hd−1(f−1(a)) denote the volume of level
set f−1(a) in D. Then, almost surely, we have

Hd−1(f−1(b))−Hd−1(f−1(a)) =

∫∫
D

κ1f∈[a,b]dvol−
∮
∂D

〈
∇f
|∇f |

, η̂

〉
1f∈[a,b]dS

(2.1)
where

κ = div

(
∇f
|∇f |

)
is (d− 1) times the mean curvature of level set of f at x and η̂ is the outward
unit normal to the (d− 1)-dimensional slabs of ∂D. We also have

Hd−1(f−1(b)) → Hd−1(f−1(a)), as b→ a

almost surely and in L1.

As a corollary, we get the following formula for the mean curvature of level
sets at a given level. Usually, it is hard to get such explicit formula for general
fields.

Corollary 2.2.4. With assumptions as in Theorem 2.2.2 , we have

E[κ|f = a] = −aE[|∇f |].

12



2.3 Proofs

Proof of Proposition 2.2.3. Note that f has only finitely many critical points
in D a.s. We prove in subsection 2.3.1 that κ as a function on D is integrable
almost surely. We also can assume that f has no critical points on ∂D. This
is because of Bulinskaya lemma, since ∂D is (d− 1)-dimensional and for non-
degenerate, smooth Gaussian f the gradient ∇f has (Gaussian) density on
Rd.

Case 1: a, b are regular values of f .

Let R′ = D∩f−1[a, b] and the unit outward normal η̂ = −∇f/|∇f | on f−1(a),
η̂ = ∇f/|∇f | on f−1(b) (assuming a < b), outward normal on parts of ∂D ∩
f−1(a, b). Assume that R′ has no critical points of f and we know that κ
is continuous except at critical points of f . Apply Greens formula for the
function ∇f/|∇f | on R′, we get

∫
f−1(b)∩D

〈
∇f
|∇f |

, η̂

〉
dS+

∫
f−1(a)∩D

〈
∇f
|∇f |

, η̂

〉
dS+∮

∂D

〈
∇f
|∇f |

, η̂

〉
1f∈[a,b]dS =

∫∫
R′
div

(
∇f
|∇f |

)
dvol.

(2.2)

But first two terms of LHS of above equation areHd−1(f−1(b)),−Hd−1(f−1(a))
respectively. Hence we get equation (2.1) in this case.

If R′ has critical points of f , then the number of critical points has to be finite.
Let {x1, x2, . . . xk} be the critical points in R′. Now apply the divergence
theorem to the field ∇f/|∇f | on R′ \ ∪jBδ(xj). Letting δ → 0, and using
integrability of κ on D (see subsection 2.3.1), we again get equation (2.1).

Case 2: a or b (or both) are critical values of f .

First, let us show continuity of volume of level sets at all levels, including at
critical values of f . Fix a critical value a of f . By Morse lemma, f can be
made a quadratic function at a critical point by re-parametrisation. Let p
be a critical point, then there is a neighborhood U of p and a smooth chart
(y1, y2, . . . , yd) such that yi(p) = 0 and

f(y) = f(p)± y21 ± y22 · · · ± y2d.

We know that the volume of level sets of quadratic functions are continuous.
So, given a critical point p of f at level a, volume of level sets of f in a
neighborhood U of p converge when the levels converge to a. When x0 ∈ f−1(a)
is a regular point, then there exists a neighborhood Ux0 such that the volume
of level sets are continuous. This follows from the implicit function theorem.

13



Now, using compactness of f−1(a) ∩ D, we get that volume of level sets is
continuous at any arbitrary level.

Since the number of critical values of f is finite in D, any critical level in D can
be approximated by regular levels of f in D. Let ϵn be a sequence converging
to zero such that (b − ϵn), (a + ϵn) are sequences of such regular values of f .
By continuity of the volume of level sets, we have

Hd−1(f−1(b))−Hd−1(f−1(a)) = lim
n→∞

[L(b− ϵn)− L(a+ ϵn)].

Using case 1, we have the integral formula for difference of volume of level sets.
Note that 〈

∇f
|∇f |

, η̂

〉
1f∈[a+ϵn,b−ϵn] →

〈
∇f
|∇f |

, η̂

〉
1f∈[a,b],

κ1f∈[a+ϵn,b−ϵn] → κ1f∈[a,b]

pointwise. Hence by the dominated convergence theorem, we have equation
(2.1) for case 2 as well.

We have that Hd−1(f−1(b)) → Hd−1(f−1(a)) as b → a a.s. by above dis-
cussion of continuity of length w.r.t levels. We also have E[Hd−1(f−1(b))] →
E[Hd−1(f−1(a))] when b→ a by Kac-Rice formula. Hence, by Scheffe’s lemma,
we have L1 convergence.

Proof of Corollary 2.2.4. Take expectation to both sides of the equation (2.1).
Switching integration and expectation because of Fubini’s theorem, we get

E[Hd−1(f−1(b))]−E[Hd−1(f−1(a))]

=

∫∫
D

E[κ1f∈[a,b]]dvol−
∮
∂D

E
[〈

∇f
|∇f |

, η̂

〉
1f∈[a,b]

]
dS.

Now, let us divide the above equation by b− a and try taking the limit b→ a.

First, from stationary Kac-Rice formula, we have

lim
b→a

E[Hd−1(f−1(b))]− E[Hd−1(f−1(a))]

b− a
= −ap(a)Ld(D)E[|∇f |].

Next, from the continuity of the Gaussian regression formula, we get the fol-
lowing conditional expectations (see [AW09, Theorem 3.2] for an explanation).
Consider the expression E[κ1f∈[a,b]] and write it in the following form,

E[κ1f∈[a,b]] =

∫ b

a

E[κ|f = u]p(u)du

14



Now note that E[κ|f = u] is continuous in u, hence (b − a)−1E[κ1f∈[a,b]] →
E[κ|f = a] as b→ a. By the dominated convergence theorem, we have

lim
b→a

1

b− a

∫∫
D

E[κ1f∈[a,b]]dvol =

∫∫
D

E[κ|f = a]p(a)dvol.

A similar argument works for the claim

lim
b→a

1

b− a

∮
∂D

E
[〈

∇f
|∇f |

, η̂

〉
1f∈[a,b]

]
dS =

∮
∂D

E
[〈

∇f
|∇f |

, η̂

〉
|f = a

]
p(a)dS.

Combining these calculations, we have the following equation

−ap(a)Ld(D)E[|∇f |]+
∮
∂D

E
[〈

∇f
|∇f |

, η̂

〉
|f = a

]
p(a)dS =

∫∫
D

E[κ|f = a]p(a)dvol

(2.3)
where p is the pdf of standard Gaussian random variable.

Now, we claim that ∮
∂D

E
[〈

∇f
|∇f |

, η̂

〉
|f = a

]
dS = 0. (2.4)

Since ∇f and f are pointwise independent r.v. (by stationary), integral on a
(d − 1)-dimensional slab in ∂D cancels that from the opposite slab (also by
stationarity). So we have equation (2.4).

Again by stationarity of κ, the equation (2.3) reduces to E[κ|f = a]p(a) =
−aE[|∇f |]p(a). Hence we have the Corollary 2.2.4.

Proof of Theorem 2.2.2. First, observe that Hd−1(f−1(a)) → 0 almost surely
as a→ ∞ or as a→ −∞, since probability that f is unbounded on D is zero.
Now, taking difference of equation (2.1) applied to f1, f2 and taking b = 0,
a→ −∞ we have,

Hd−1(f−1
1 (0))−Hd−1(f−1

2 (0)) =

∫∫
D

[κ11f1≤0 − κ21f2≤0] dvol

−
∫
∂D

[〈
∇f1
|∇f1|

, η̂

〉
1f1≤0 −

〈
∇f2
|∇f2|

, η̂

〉
1f2≤0

]
dS.

(2.5)

We bound the bulk term and the boundary term of equation (2.5) separately.

Bulk term: First we have,
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∣∣∣∣∫
D

[κ11f1≤0 − κ21f2≤0] dvol

∣∣∣∣ ≤ ∣∣∣∣∫
D

(κ1 − κ2)1[f1, f2 < 0]dvol

∣∣∣∣
+

∣∣∣∣∫
D

κ11[f1f2 < 0]dvol

∣∣∣∣+ ∣∣∣∣∫
D

κ21[f1f2 < 0]dvol

∣∣∣∣ .
(2.6)

For the second term of equation (2.6) we show that, with probability close to
one, Ld(f1f2 < 0) is small and that integral of curvature is bounded with high
probability.

Note that E[|κ1|1+α] < ∞ for all 0 < α < 1 (see section 2.3.1). Take α = 1/2
when applying Hölder inequality in the following computation. Given a point
x ∈ D, recall that κ1(x) is the mean curvature of the level set f−1(c), where
x ∈ f−1(c), at x.

∣∣∣∣E∫
D

κ11[f1f2 < 0]dvol

∣∣∣∣ ≤ E
∣∣∣∣∫

D

κ11[f1f2 < 0]dvol

∣∣∣∣
≤
∫
D

E|κ11[f1f2 < 0]|dvol

≤ (E|κ1|3/2)2/3
∫
D

P[f1(x)f2(x) < 0]1/3dvol

≤ C1 · Ld(D) sup
D

[(arccos(ρ(x)))1/3]

(2.7)

where ρ(x) is the correlation between f1(x) and f2(x),and the constant C1

depends only on the law of the fields. Note that arccos(x) = c1
√
(1− x) +

O((1 − x)3/2) near x = 1, where c1 is a universal constant. We have that
|1− ρ(x)| ≤ σ2

D/2 for all x ∈ D. Hence we have,

E
[∣∣∣∣∫

D

κ11[f1f2 < 0]dvol

∣∣∣∣] ≤ C2Ld(D)σ
1/3
D (2.8)

where the constant C2 only depends on the spectral measure.

Next, we’ll bound the term

E
[∣∣∣∣∫

D

(κ1 − κ2)1[f1, f2 < 0]dvol

∣∣∣∣] .
Notice that

E
[∣∣∣∣∫

D

(κ1 − κ2)1[f1, f2 < 0]dvol

∣∣∣∣] ≤ E
[∫

D

|κ1 − κ2|dvol
]
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We split the computation into two cases: ||∇fi|| < δ for one of the i = 1, 2
and ||∇fi|| > δ for both i’s (for some fixed δ > 0). 2 Now,∫
D

E [|κ1 − κ2|1[||∇f1|| < δ]] dvol ≤ (E|κ1 − κ2|4/3)3/4
∫
D

P(||∇f1||2 < δ2)1/4dvol

≤ C3Ld(D)
√
δ.

(2.9)

In the first inequality, we used the fact that curvature has 1 + α moments for
α ∈ ([0, 1)) and applied Hölder’s inequality. Observe that ||∇f1||2 has bounded
pdf around zero, so P(||∇f1||2 < δ2) = O(δ2).
Define

β := ||f1 − f2||C2(D).

We exploit explicit representation of the curvature (2.15) in terms of derivatives
of the field. Given that ||∇f1||, ||∇f2|| > δ we have,

|κ1 − κ2| ≤
1

δ3
(βp1 + β2p2 + β3p3)

where pi’s are polynomials in the first two derivatives of f1 of degree at most
2. Hence,

E
∣∣∣∣∫

D

(κ1 − κ2)1[||∇f1||, ||∇f2|| > δ]dvol

∣∣∣∣ ≤ δ−3

∫
D

E[(βp1 + β2p2 + β3p3)]dvol.

(2.10)

Using Cauchy-Schwartz inequality and the fact that laws of the polynomials
pis are translation invariant, we have the following estimate,

E
∣∣∣∣∫

D

(κ1 − κ2)1[||∇f1||, ||∇f2|| > δ]dvol

∣∣∣∣ ≤ C4Ld(D)

δ3
(
√
Eβ2+

√
Eβ4+

√
Eβ6).

But we have the moment estimates of β,

E[βp] ≤ C̃σp
D

which is given in [NS16, A.11.1], the Eβ2 term dominates when the coupling
of the fields f1, f2 close. So we have,

E
∣∣∣∣∫

D

(κ1 − κ2)1[||∇f1||, ||∇f2|| > δ]dvol

∣∣∣∣ ≤ C5Ld(D)

δ3
(
√
Eβ2). (2.11)

Boundary term: We come to the boundary term of equation (2.5).

∫
∂D

[〈
∇f1
|∇f1|

, η̂

〉
1f1≤0 −

〈
∇f2
|∇f2|

, η̂

〉
1f2≤0

]
dS =∫

∂D

[〈
∇f1
|∇f1|

− ∇f2
|∇f2|

, η̂

〉
1[f1, f2 < 0]

]
dS+

∫
∂D

[〈
∇f1
|∇f1|

, η̂

〉
1[f1 < 0, f2 > 0]

]
dS

+

∫
∂D

[〈
∇f2
|∇f2|

, η̂

〉
1[f2 < 0, f1 > 0]

]
dS (2.12)
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The analysis of bounds of first term of RHS of equation (2.12) is similar to
that of equation (2.9). We get that,∣∣∣∣E∫

∂D

[〈
∇f1
|∇f1|

− ∇f2
|∇f2|

, η̂

〉
1[f1, f2 < 0]

]
dS

∣∣∣∣ ≤ C6Ld−1(∂D)(δ21 + Eβ/δ1)

(2.13)
for δ1 > 0.
Now, second term of RHS is bounded by C · Ld−1(∂D ∩ {f1f2 < 0}) since
∇f1/|∇f1| is unit vector. By similar argument which lead to equation (2.8),
we have

ELd−1(∂D ∩ {f1f2 < 0}) ≤ C8Ld−1(∂D)σD. (2.14)

This is again dominated by the quantity of RHS of equation (2.8).

Analysis of the final bound: We combine the bounds from (2.8), (2.9),(2.11),
and (2.13). Finally, we get

E|Hd−1(f−1
1 (0))−Hd−1(f−1

2 (0))| ≤ CLd(D)

(
σ
1/3
D +

√
δ +

√
Eβ2

δ3
+
δ21
R

+
Eβ
δ1R

)
.

Estimates from [NS16, A.9, A.11.1] gives us Eβ ≤ C1(R)σD and
√
Eβ2 ≤

C2(R)σD, where we can show that C1(R), C2(R) behave like
√
logR. One way

to argue is to cover the domain D with discs of fixed radius and proceed as in
[BM22, Lemma 2.1].

Now, choosing δ = σ
2/7
D , δ1 = σ

1/2
D , and assuming σD is small enough we have,

E|Hd−1(f−1
1 (0))−Hd−1(f−1

2 (0))| ≤ C(R)Ld(D)σ
1/7
D .

2.3.1 Technical bits

Moments of curvature r.v.: We show that the (1 + α)-moments are finite,
where 0 < α < 1 for the r.v. κ of a C2-smooth, non-degenerate, stationary
field f . Observe that

κ =
|∇f |2Tr(H(f))−∇fH(f)∇fT

|∇f |3
(2.15)

whereH(f) is the Hessian of the function f , by a simple algebraic computation.

First let us prove that E[|κ|1+α] <∞ for d = 2 case. The general case follows
from similar computation. Observe that

X = (x1, x2, x3, x4, x5) = (∂xf, ∂yf, ∂xxf, ∂xyf, ∂yyf)
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is a Gaussian vector and that

(∂xf, ∂yf) and (∂xxf, ∂xyf, ∂yyf)

are independent, by stationarity of the field f . Let Σ be the covariance matrix
of the Gaussian vector (∂xf, ∂yf) and P1 be the law of (∂xxf, ∂xyf, ∂yyf). Let
x = (x1, x2) and x′ = (x3, x4, x5).

So,

E[|κ|1+α] =
1√

det(2πΣ)
×∫

R5

∣∣∣∣x22x3 − 2x1x2x4 + x21x5
(x21 + x22)

3/2

∣∣∣∣1+α

exp (−1/2(xTΣ−1x))dxdP1(x
′).

By changing the variables to x1 = r cos θ, x2 = r sin θ and keeping other vari-
ables same, we get ,

E[|κ|1+α] =
1√

det(2πΣ)
×∫

I

r−α
∣∣sin2 θx3 − sin(2θ)x4 + cos2 θx5

∣∣1+α
exp(−1/2(x̃TΣ−1x̃))drdθdP1(x

′)

where x̃ = (r cos θ, r sin θ) and I = [0,∞] × [0, 2π] × R3. Now, for 0 ≤ α < 1
the above integral converges. Near the origin of I convergence is taken care by∫ 1

0
r−αdr < ∞ and away from origin exp(· · · ) dominates. The result follows

from the fact that the vector (∂xxf, ∂xyf, ∂yyf) has all moments finite.

Integrability of curvature function: Consider a deterministic C2-Morse
function f on a compact domain D ⊂ Rd. As above, at every x ∈ D which is
a regular point of f , define κ to be the divergence of unit normal of f .
We prove that ∫

D

|κ|dvol <∞.

Note that except at critical points of f , κ is continuous. So just need to show
that

∫
Br(x0)

|κ|dvol < ∞ for a critical point x0 of f and a small enough ball

Br(x0) around x0.

We have ∇f(x) = H(f)|x0(x− x0) +O(||x− x0||2), by Taylor’s series. Since f
is Morse, we can invert H(f)|x0 to have

||∇f(x)|| ≥ C
||x− x0||
||H(f)−1

x0
||
.

Since ∂xxf, ∂xyf, ∂yyf are all bounded on D and

|∂xf(x)| ≤ c1||x− x0||, |∂yf(x)| ≤ c2||x− x0||
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near x0 and again, exploiting the equation (2.15), we have∫
Br(x0)

|κ|dvol ≤ C̃

∫
Br(x0)

1

||x− x0||
dvol.

But we have ∫
Br(x0)

1

||x− x0||
dvol <∞

for any d ≥ 2. This completes the proof that the mean curvature function is
integrable on D.
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Chapter 3

Structure of critical points of
smooth Gaussian fields

3.1 Introduction

Local maxima / high points of Gaussian fields is an important geometric ob-
servable in probability theory, mathematical physics and in natural sciences.
Analysis of critical points of smooth fields is crucial in the understanding of
of landscape of the field. For example, it plays an important role in comput-
ing topological quantities like number of connected components of level sets
[BMM22].

In statistics, extreme values of Gaussian processes are vital to real-world ap-
plications and are studied well. Limit theorems for extrema of these processes
were proved in 1960’s & 70’s cf. [LLR83]. Then later in 1990’s, Piterbarg
[Pit96] showed Poisson process convergence for so-called ‘A-exit points’ over a
high level of a smooth Gaussian field of dimension d ≥ 2.

The following are some of the results pertaining to Poisson convergence of
point processes of smooth Gaussian fields (including dimension one).

1. In 1-dim, number of upcrossings at level u(T ) ≃
√
2 log T over the inter-

val [0, T ], as T → ∞. [LLR83, Chapter 9]

2. In dimension 2 or more, “A-exit points” over level u(R) ≃
√
2d logR in

growing region [0, R]d, as R → ∞. [Pit96, Section 15]

3. In dimension 2 or more, for local maxima over level u(R) ≃
√
2d logR

in growing region [0, R]d, as R → ∞. [Qi22, Chapter 3]

In all of the examples above, the decay of correlation of the field at infinity is
around log−1 of the distance. A somewhat related set of results include limit
theorems for extremal processes for class processes with Markovian property
like Gaussian free field, branching Brownian motion. Arguin et al. [ABK13]
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showed that extremal process of branching Brownian motion converges weakly
to clustered Poisson process. Oleskar-Taylor, Sousi [ST20] showed that high
points ( level above αE[maxima], 0 < α0 < α) of discrete GFF in d ≥ 3
converges in total variation distance to independent Bernoulli process on the
lattice. In essence, we can expect some Poisson limit for extremal process if
either the covariance decays fast enough at infinity or there’s some Markov
property.

Our contribution is to consider limits for local maxima over arbitrary levels
u(R) → ∞ as R → ∞. As far as we know, this is the first time a lower
level than the expected maxima in a domain is studied in this context. Also,
our result includes monochromatic random waves (MRW) model, which is not
covered in [Qi22]. Surprisingly, lowering the rate of threshold level does not
impose any additional condition on the decay rate of correlations.

Let us remark about the landscape of random planes waves in the context of
Thm 3.2.2. Numerical simulations by A. Barnett (See Figure 5.1) suggests that
there’s apparent filament structure of extrema above a level (say above three
std deviations of the field). Our result indicates that these patterns disappear
at high levels.

3.2 Setup and statement

Consider a C2+-smooth Gaussian field f : Rd → R, with d ≥ 2, P being the
associated probability measure. Let E denote the expectation with respect to
P and let r(x, y) = E[f(x)f(y)] be the covariance kernel [see [NS16, Appendix
A] for more details]. For R > 0, L = [0, 1]d ⊂ Rd and let LR = [0, R]d = R ·L.
Let u : R+ → R+ be an increasing function such that u(R) ≤

√
2d logR → ∞

as R → ∞. By abuse of notation, we often write u = u(R).

Consider the following scaling of the field f ,

fR(x) = f(µ(R) · x) for x ∈ Rd,

where

µ(R)−1 = κ1/dRu
d−1
d exp

(
−u

2

2d

)
and κ = 1/(2π)(d+1)/2.

Now we define a sequence of point process indexed by R as follows. Let

ηR(B) = number of local maxima above level u(R) of the field fR in B

where B is a Borel set in Rd. Let

ΦR(B) = ηR(R ·B)

for Borel sets B in Rd. Our goal is to show that ΦR → Φ weakly as point
processes where Φ is a homogeneous Poisson point process, given that the field
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f satisfies some mild regularity and correlation decay conditions (see [Kal17,
Chapter 4]).

Assumptions 3.2.1. Throughout the article, we impose the following condi-
tions on the Gaussian field f .

1. Centred (E[f(x)] = 0), stationary (r(x, y) = r(x − y)), normalised
(E[f(x)2] = 1) for all x, y ∈ Rd.

2. Decay of correlation: r(x) = o((log ∥x∥)1−d) as x→ ∞.

3. The vector (f(0),∇f(0)) has density in Rd+1. In addition, either the vec-
tor (f(0),∇f(0),∇2f(0)) has density in R(d+1)+d(d+1)/2 or f is isotropic
field (i.e. r(x) = “r(∥x∥)”).

4. Local structure: r(x) = 1 − ∥x∥2 + o(∥x∥2) as x → 0. Note that ∃
invertible matrix M such that r(M · x) = 1 − ∥x∥2 + o(∥x∥2) as x → 0
for any C3-smooth field f .

One observation regarding the covariance structure r is that

r(x, y) < 1 ∀x ̸= y.

This follows from stationarity of the field and the fact that r(x) → 0 as x→ ∞.
This is helpful when estimating exceedance probability of the field over a large
given threshold.

Theorem 3.2.2. With the setup above and with the Assumptions 3.2.1 on the
Gaussian field f : Rd → R, we have

ΦR → Φ in distribution as R → ∞

where Φ is Poisson point process with intensity measure as Lebesgue measure
on Rd.

First, note that invertible linear transform T of a Poisson point process (with
intensity measure λ) is again a Poisson point process with new intensity mea-
sure | det(T )|λ. So rescaling the field as in 4. of the assumption above is
just for convenience. Next, Bargmann-Fock field and monochromatic random
waves for dimension d ≥ 2 satisfy the assumptions. Indeed, the covariance ker-
nels have decay rates exp(−∥x∥2/2) and O(∥x∥−1/2) for Bargmann-Fock and
monochromatic random waves respectively.

Now, some comments on the scaling of the field. By Appendix A, expected
maximum of the field in the region [0, R]d is asymptotically

√
2d logR as R →

∞. Now by super-concentration of maximum for smooth Gaussian field result
[Tan15], variance of maxima behaves like 1/ logR. Hence, for levels above
α
√
2d logR with α > 1, we don’t expect to see any point in [0, R]d. So we
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assume u ≤
√
2d logR (supercritical case of α > 1 is taken care in ‘Chen-Stein

method’ section anyway).

Let us illustrate our scaling procedure by taking the level to be u =
√
2dα logR.

To compare it to a homogeneous Poisson process, we need to rescale the local
maxima point process to, say, unit density. Let Mu(f, S) denote the number
of local maxima of f in S ⊂ Rd with f > u. Then,

E[Mu(f, [0, R]
d)] ≃ (logR)(d−1)/2R(1−α)d.

Rescaling the point process in [0, R]d by factor R−α (ignoring log factors), we
get a unit density process, which corresponds to Φ. Note that we’ve defined Φ
above by reversing this procedure.

Plan of proof

It is well known at least since 1970’s that avoidance probabilities (i.e. P(η(B) =
0) for Borel sets B) characterise simple point process (i.e. point processes with
mass concentrated only on atoms). Now, weak convergence of these point
processes can be studied by scrutinising avoidance probabilities and intensity
measures.

Definition 3.2.3 (DC-ring). Let B be the Borel σ-algebra on Rd. A ring
L ⊂ B is called a DC-ring (‘dissecting covering’ ring) if for any compact set
K from B, and arbitrary ϵ > 0, there exists a finite covering of K by some sets
l ∈ L such that diam L ≤ ϵ.

Let L be a ring generated by rectangles

d∏
i=1

[ti, ti + si), si ≥ 0, i = 1, 2, . . . , d

which will be a DC-ring with the property that Φ(∂l) = 0 a.s. for any l ∈ L.
Then by [Kal17, Theorem 4.18], it is enough to show that

lim
R→∞

P(ΦR(l) = 0) = P(Φ(l) = 0), lim sup
R→∞

EΦR(l) ≤ EΦ(l) (3.1)

for all l ∈ L. In the proof below, we’ll show this for L = [0, 1]d but the
argument works for any l ∈ L.

First, we approximate avoidance probabilities of the sequence ΦR by the ex-
cursion probabilities of the field fR (Lemma 3.3.1). Then we approximate
excursion probabilities on rectangles P(supR·L fR > u) by that on a grid which
is fine enough (Lemma 3.3.2). By standard theory, we know that for a regular
enough field f with unit variance, the excursion set {f > u} is captured by a
grid with width u−1 for large u. Now we compare the excursion probabilities of
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the field f to that of the field f0 which is an i.i.d copy of f on a each fixed box.
This is done by comparison method for Gaussian vectors [Pit96, Thm 1.1] and
is the same as proof of [Pit96, Thm15.2]. Lastly, from Lemma 3.3.4 we show
that excursion probabilities of the field f0 converges to avoidance probabilities
of Poisson point process, which proves the first part of eq. (3.1).

We consider the second part of eq. (3.1). Computing expected number of
critical points of given index of smooth Gaussian fields is classical problem in
this field [Adl10]. Thanks to Kac-Rice formulas, we know precise estimates
of these quantities, even explicit result in some cases. Using these estimates,
we’ll show that

lim
R→∞

E[ΦR(L)] = E[Φ(L)].

These two parts conclude the proof of the theorem 3.2.2.

3.3 Proof

Recall that L is a unit box in Rd and let LR := R · L. Define

Pf (u, S) = P
(
sup
t∈S

f(t) ≤ u

)
and P̄f (u, S) = P

(
sup
t∈S

f(t) ≥ u

)
.

Let A be a ball centred at origin in Rd. We define Minkowski sum of two
subsets A,B of Rd as

A⊕B = {x+ y : x ∈ A, y ∈ B}.

Now we approximate the avoidance probability of point process with excursion
probabilities.

Lemma 3.3.1. With the above setup, we have

P(ΦR(L) = 0) = PfR(u, LR) + o(1) as R → ∞.

Proof. First, observe that P(ΦR(L) = 0) ≥ PfR(u, LR). From the fact that
each connected component of {f(x) ≥ u} must have a local maximum, we
have

{ΦR(L) > 0} ⊇

{
sup
LR

fR ≥ u, sup
(LR⊕A)\LR

fR < u

}
.

Note that the RHS just makes sure that LR has at least one component of
{fR(x) ≥ u} lying completely inside it. Hence,

P(ΦR(L) = 0) ≤ PfR(u, LR) + P

(
sup
LR

fR ≥ u, sup
(LR⊕A)\LR

fR ≥ u

)
.
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Now,

P

(
sup
LR

fR ≥ u, sup
(LR⊕A)\LR

fR ≥ u

)
≤ P̄fR(u, (LR ⊕ A) \ LR).

Noting that vol((LR ⊕ A) \ LR) = O(Rd−1) for large R and that P̄fR(u, S) =
P̄f (u, µ(R) · S) and applying [Pit96, Thm 7.1], using homogeneity of the field,
we have

P̄fR(u, (LR ⊕ A) \ LR) ≤C · vol(µ(R) · (LR ⊕ A) \ LR)u
d−1 exp(−u2/2)

=O(R−1) as R → ∞.

Now, we discretise the domain and approximate the excursion probabilities on
this grid as explained before. Let gR be some scaling (to be determined in the
course of the proof). Fixing b > 0, define Rb = bgRZd.

Lemma 3.3.2. For any ϵ > 0, there exists b, R0 > 0 such that for all R > R0,

PfR(u, LR ∩Rb)− PfR(u, LR) ≤ ϵ.

Proof. We have

PfR(u, LR ∩Rb)− PfR(u, LR) = P
(

sup
LR∩Rb

fR ≤ u, sup
LR

fR > u

)
.

By homogeneity of the field fR, we have (calling µ(R)Rb = R′
b )

P
(

sup
LR∩Rb

fR ≤ u, sup
LR

fR > u

)
≤ (Rµ(R))dP

(
sup
L∩R′

b

f ≤ u, sup
L
f > u

)

Now by the standard theory of excursion approximation (see [Pit96, Lemma
15.3]), when gR = (uµ(R))−1 and b > 0 is small enough, we have

P

(
sup

[0,1]d∩R′
b

f ≤ u, sup
[0,1]d

f > u

)
≤ ϵ , R > R0.

We define λa,R given numbers a > δ > 0. Divide the rectangle µ(R)R · L into
smaller ones by following construction. Divide each edge of µ(R)R · L into
segments of length ‘a’ alternated by that of δ. Call λa,R the union of cubes
of side length a. Note that the distance between the cubes are greater than
δ. The following lemma says that if gap between the cubes of λa,R are small
enough, then the excursion probabilities are close to that the discretisation of
Rµ(R) · L.
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Lemma 3.3.3. For any a, ϵ > 0 given, there exists δ > 0, such that, for all R
large enough we have,

Pf (u, λa,R ∩R′
b)− Pf (u, µ(R)R · L ∩R′

b) ≤ ϵ.

Proof. We have that

Pf (u, λa,R∩R′
b)−Pf (u, µ(R)R ·L∩R′

b) ≤ P

(
sup

λa,R∩R′
b

f ≤ u, sup
µ(R)R·L∩R′

b

f > u

)
.

Now using homogeneity of the field,

P

(
sup

λa,R∩R′
b

f ≤ u, sup
µ(R)R·L∩R′

b

f > u

)
≤ P̄f (u, µ(R)R · L \ λa,R)

≤ vol(µ(R)R · L \ λa,R)P̄f (u, L)

≤ δ
(µ(R)R)d

(a+ δ)
P̄f (u, L)

≤ Cδ((µ(R)R)d)ud−1 exp(−u2/2)

Now, we get that the expression is bounded by c ·δ where c is a constant which
doesn’t depend on R.

Let f0 be a field defined on λa,R such that on the cubes of side length a, the field
is made up of i.i.d copies of f . We now show that the excursion probability of
f0 converges to avoidance probability of Poisson point process.

Lemma 3.3.4. We have

Pf0(u, λa,R) → exp(−vol(L)) as R → ∞.

Proof. Let N be the number of cubes of side length a in λa,R. Then,

Pf0(u, λa,R) = (1− P̄f (u, [0, a]
d))N

by independence of the field on these cubes. Taking logarithm, it is enough to
estimate

N log(1− P̄f (u, [0, a]
d)) = −NP̄f (u, [0, a]

d) +O(NP̄f (u, [0, a]
d)2).

Now,
P̄f (u, [0, a]

d) = κadud−1 exp(−u2/2)(1 + o(1))

and

N =

(
Rµ(R)

a+ δ

)d

+O((Rµ(R))d−1).

Hence,

NP̄f (u, [0, a]
d) =

(
a

a+ δ

)d

+ o(1) and NP̄f (u, [0, a]
d)2 = o(1).

Since L is a unit box and we can take δ arbitrarily small, we have the result.
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Proof of Theorem 3.2.2. First, observe that all the proof of lemmas goes through
even when L is a finite union of finite rectangles. For any given ϵ > 0, there
exists a, b, δ, R0 such that for all R > R0,

|P(ΦR(L) = 0)− Pf (u, λa,R ∩R′
b)| ≤ ϵ.

We show that |Pf (u, λa,R ∩ R′
b) − Pf0(u, λa,R ∩ R′

b)| → 0 as R → ∞ then by
Kallenberg’s theorem (see [Pit96, Section 13]) we’re done. This is done by
method of comparison for Gaussian vectors as in Theorem 1.1 of Piterbarg,
which is a generalisation of the classical Berman inequality. For the rest of the
proof, we follow argument of proof of Thm 15.2 of [Pit96].

Let Ki be a renumbering of cubes with edges of length a which comprise λa,R,
i = 1, 2, . . . , N . Let covariance of the field f0 on λa,R be denoted by r0(t, s).
Define λ′a,R,b = λa,R ∩R′

b Then by Theorem 1.1 of [Pit96], we have

|Pf (u, λ
′
a,R,b)−Pf0(u, λ

′
a,R,b)| ≤

1

π

∑
t,s∈λ′

a,R,b

|r(t− s)− r0(t− s)|

×
∫ 1

0

(1− (hr(t, s))2)−1/2 exp

(
− u2

1 + hr(t, s)

)
dh.

(3.2)

Denote the summand on RHS of above equation by β(t, s). If t, s ∈ Ki for
some i, then r(t, s) = r0(t, s), hence β(t, s) = 0.
Now consider the case that t, s belong to different Ki and Kj such that |t−s| ≤
Rγ1 , where γ1 > 0 is a constant chosen later. Since t, s belong different cubes,
we have |t− s| > δ, hence |1− r(t, s)| > γ2 > 0. So,

1

1 + r(t, s)
>

1

2
+
γ2
4
.

Now, ∑
t∈Ki,s∈Kj ,i ̸=j,

|t−s|<Rγ1

β(t, s) ≤ C1

∑
|r(t, s)| exp

(
− u2

1 + r(t, s)

)

≤ C2(µ(R)R)
dRγ1d exp(−u2/2(1 + γ2/2))

≤ C3u
d−1eu

2/2eγ1u
2/2 exp(−u2/2(1 + γ2/2))

→ 0 as R → ∞ if 0 < γ1 < γ2.

(3.3)

Here we’ve used that u ≤
√
2d logR, and Ci’s are different constants not

depending on R.
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Lastly, we consider the case where |t− s| ≥ Rγ1 . We have,∑
t∈Ki,s∈Kj ,i ̸=j,

|t−s|≥Rγ1

β(t, s) ≤ C1

∑
|r(t, s)| exp

(
− u2

1 + r(t, s)

)

≤ C2(µ(R)R)
2dr′(Rγ1) exp

(
− u2

1 + r′(Rγ1)

)
≤ C3u

2d−2r′(Rγ1) exp

(
r′(Rγ1)u2

1 + r′(Rγ1)

)
(3.4)

where
r′(h) := max

|t|≥h
|r(t, 0)|, h ∈ (0,∞).

Observing that the assumption on the decay of correlation (point 2 of Assump-
tion 3.2.1) implies that u2d−2r′(Rγ1) → 0, since we have u ≤

√
2d logR and

d ≥ 2. In particular, u2r′(Rγ1) → 0. Hence,∑
t∈Ki,s∈Kj ,i ̸=j,

|t−s|≥Rγ1

β(t, s) → 0 as R → ∞.

Computation of expectation

Our next goal is to show the following

lim
R→∞

E[ΦR(L)] = E[Φ(L)].

For the case that (f(0),∇f(0),∇2f(0)) having density in R(d+1)+d(d+1)/2, [Adl10,
Thm 6.3.1] suffices. If the field is isotropic and if (f(0),∇f(0),∇2f(0)) is de-
generate then the field has to be monochromatic random wave (MRW) (see
[CS18, Prop 3.10]). From Example 3.15 of [CS18], we can calculate the limit
of E[ΦR(L)] for the case d = 2. But explicit expressions for height densities are
hard to get for d ≥ 3 directly. So we shift the MRW field by an independent
normal random variable, so that the joint vector of the field, its gradient, and
hessian has density. Then we use the explicit asymptotic as in [Adl10, Thm
6.3.1].

Let us first consider the case that (f(0),∇f(0),∇2f(0)) having density in
R(d+1)+d(d+1)/2. As mentioned, we’ll use the following theorem by Adler

Theorem 3.3.5 (c.f. [Adl10] Theorem 6.3.1). Let f : Rd → R be a stationary,
C2-smooth Gaussian field such that (f(x),∇f(x),∇2f(x)) is non-degenerate
for all x ∈ Rd. Further assume that f(x) has zero mean, unit variance. Let
Mu(f, S) denote the number of local maxima of f in S ⊂ Rd with f > u. Then,

E[Mu(f, S)] =
vol(S) det(Λf )

1/2ud−1

(2π)(d+1)/2
exp (−u2/2)(1 +O(u−1))
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where Λf is the covariance matrix of ∇f and O(u−1) is independent of choice
of S.

Then by above theorem, for any Borel set B ⊂ Rd

E[ΦR(B)] = E[ηR(µ(R) ·B)]

=
vol(Rµ(R) ·B)

(2π)(d+1)/2
ud−1 exp(−u2/2)(1 +O(u−1))

= vol(B)(1 +O(u−1))

→ E[Φ(B)] as R → ∞.

(3.5)

Here, we’ve used the fact that determinant of covariance matrix of ∇f is 1,
which follows from point 4 of Assumption 3.2.1.

Now we consider the monochromatic random waves (MRW) case. Let f :
Rd → R be an MRW field. Let ϵ > 0 and consider a random variable N ,
independent of the field f , which is standard normal variate. Define,

fϵ(x) := f(x) + ϵN, x ∈ Rd.

Observe that fϵ is still a centred, stationary field and that fϵ(0),∇fϵ(0),∇2fϵ(0)
is a Gaussian vector with density. Define M(u, g) to be the number of local
maxima of a Gaussian field g in [0, 1]d.
Now we have, by an application of Kac-Rice formula,

E[M(u, fϵ)] =

∫
R
E[M(u− ϵb, f)|N = b]ϕ(b)db.

where ϕ is the pdf of standard normal variate. Also,

M(u− ϵb, f) −→M(u, f) a.s. as ϵ→ 0.

We know that M(u, f) is integrable, and monotonic w.r.t. u, so using domi-
nated convergence theorem,

E[M(u− ϵb, f)] → E[M(u, f)], ϵ→ 0.

Since E[M(u, f)] is uniformly bounded in u, apply DCT for E[M(u−ϵb, f)]ϕ(b)
to get,

lim
ϵ→0

E[M(u, fϵ)] = E[M(u, f)].

Computing E[M(u, fϵ)] is handled again by [Adl10, Thm 6.3.1] as eq (3.5).
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Chapter 4

Current work

This was a follow up write up requested my Confirmation examiners (Jan
Obloj and Zhongmin Qian).

Distance between high critical points of smooth Gaussian
fields and Poisson point process

Following notations, conventions, assumptions from Chapter 3 of my confirma-
tion report, we summarise the result mentioned in the confirmation viva under
‘current work’ section. Let f : Rd → R be a C2-smooth stationary Gaussian
field with covariance kernel K(x) = E[f(0)f(x)] (assume correlation decay fast
enough). Let ΦR denote critical points of f in [0, R]d above increasing level
u(R), scaled appropriately down to [0, 1]d to have unit density.

Let ρ denote Wasserstein 1-distance on probability measures on the metric
space (M, g), where M is the space of non-negative integer valued finite mea-
sures on [0, 1]d with metric g being Euclidean distance between point config-
urations. Let Φx

R, x ∈ [0, 1]d denote the point process of conditioning of ΦR

to have a point at x, then removing the atom at x. This corresponds to the
reduced Palm distribution of ΦR, since it is a simple point process (see [Kal17,
Chapter 6] for definition of Palm distribution and its properties). Now [CX04,
Thm 3.4] implies that, roughly speaking, ρ(ΦR, Pois(Leb)) is bounded above
by the expected distance g between the configurations ΦR and Φ0

R. From here
we can show that, for large enough R and a universal constant C

ρ(ΦR, Pois(Leb)) ≤ Cu(R) max
∥x∥≥eu

2/2

|∇K(x)|.

We are currently writing this result carefully and checking for gaps/errors.
We will make this result (and the weak convergence result in Chapter 3 of
confirmation) available on arXiv as soon as possible.
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PhD timeline

We will try to submit the above Poisson convergence result to a journal by
Dec/Jan. Next project I’m focusing on is the higher dimension case, to study
asymptotic critical point structure of fields defined on Rd when d → ∞. I
will try to finish this project by February (I feel this is reasonable). Another
project is to investigate the filament structure of random plane waves model
(see https://users.flatironinstitute.org/ ahb/rpws/ for details). This is defi-
nitely more challenging project than the previous one. I regularly think about
many toy problems from percolation theory of Gaussian fields which have po-
tential to become a good PhD project, if progress is made.

From January, I’ll start writing my PhD thesis, especially rewriting the intro
in confirmation, expanding it significantly by making it a short survey style
chapter. For main chapters, I’ll add more examples and explanation to make
it easier to read. My target is to finish writing the thesis by end of May 2025,
giving myself 5 months to write.
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Chapter 5

Future work

Many interesting questions arise out of our work and we list some of them
below. We provide a brief motivation/background and a possible strategy
towards the solution.

Filament structure of RPW

See Figure 5.1. What explains the apparent filament structure of the landscape
of random plane wave (RPW)? Is it just a numerical artefact? Our result in
the previous chapter establishes that there’s no structure for local maxima for
RPW at high levels. On the other hand, all critical points of RPW has a rigid
structure, but not repulsive at small scale, and quite different from Poisson
process [BCW19]. Looking at another criteria, Tacey [Tac23] showed that L2

norm restricted to any long line is very close to that of the entire domain,
which suggests that L2 norm is not concentrated on any line. But this was
kind of expected since these filaments spread in all directions. Currently, we’re
looking at the large scale limit of sum of delta measures at local maxima of
RPW weighted with height.

Structure of critical points

A natural question which arises out of Chapter 4 is that of rate of convergence
of law of high local maxima to Poisson process. It is easy to see that faster
the rate of level going to infinity, the closer the distribution is to Poisson
process. The rate should also depend on the covariance structure of the field,
sharper the decay of correlation faster the convergence to Poisson process.
The question is to quantify this in some metric like total variation distance or
Kantorovich-Rubinstein (KR) distance. A plausible strategy would be to use
Stein’s method for approximating Poisson process, like that in [BSY22, Thm
3.1]. This method has been applied to problems like k-nearest neighbor ball
of PPP. Here, the distance between a point process and PPP is bounded by
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Figure 5.1: Filament structure of random plane wave. Picture by Alex Barnett

‘distance’ between a coupling that process and its reduced Palm version of it.
See [BHJ92] for more on this.

Another interesting direction is to consider hole probabilities for critical points
of Gaussian fields, i.e. what is the distribution of the critical points conditioned
that there’s no critical point in a large domain U . Interesting phenomenon like
crowding of the points near the boundary of U has been observed for Ginibre
ensemble [AR17]. Does similar thing happen for rigid field like RPW? Does
Bargmann-Fock field mimick the behaviour of PPP?

Distance of nodal lengths

What is the optimal exponent of σD in RHS of Thm 2.2.2? Can we get a
similar estimate for higher moments? Intuition from geometric analysis says
we can derive the following bound,

|L1−L2| ≤∥ f1−f2 ∥C2

∫
f−1
1 (a)

κ

|∇f1|
ds+ second order terms in ∥ f1−f2 ∥C2
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where κ is the mean curvature. Now, we may want to show that

E

[(∫
f−1
1 (a)

κ

|∇f1|
ds

)m]
<∞

and hence get bounds on E|L1 − L2|m. We can use [AW09, Theorem 6.10]
kind of result for higher moments. We also have that n- point correlations of
curvature are finite even though E[κ2] = ∞.

Now, we try to prove the formula above. Say we have a perturbation of the
field f , ft(x) := f(x) + tp(x) where p(x) is thought to be small. When you
have a coupled field f1, then the difference is just p(x). Consider the following
flow of level lines of ft in the normal direction (the speed of the flow depends
on the inverse of norm of gradient of the function). For more info on this flow,
refer [BMM22, Appendix A]

dxt
dt

= p(xt)
∇ft(xt)
|∇ft(xt)|2

In this flow, the value ft(xt) stays constant. Assume that, till t = 1, the flow
hits no critical points of f (control this via quantitative Bulinskaya lemma).
Now apply the first variation of area formula (See Wikipedia) Since mean
curvature field is normal to the submanifold and the above flow is also normal
flow, we have the following estimate,

dvol(St)

dt
| t=0 =

∫
S0

p(x)
κ(x)

|∇f(x)|
dS(∗∗)

where St := f−1
t (0). The second term on RHS of the given formula inWikipedia

vanished because the flow is in the normal direction, hence the projection onto
the tangent space is zero. This “proves” point 3 above only in the limiting
case where ∥f1 − f2∥ is zero. Now, we need to integrate (∗∗) to get an actual
difference of measure of level sets.

To apply the first variational formula, we need perturbing fields to be com-
pactly supported, which means we have to mollify the edges of the vector field
to zero. But then, you won’t get the actual difference of length because the
level sets are ‘frozen’ when the vector field is zero. So, in practise, we have to
control the vector field even outside the box (which is non-compact) hence it
is hard!

On the other hand, if you consider the geometric observable “ total volume
of level sets whose nodal components stay completely inside the box” then we
don’t have to do the ‘non-compact’ analysis as explained above. To study the
boundary effect, we can borrow results from [BMW19].

Some of the applications of these estimates include a CLT for measure of level
sets in increasing boxes.
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Appendix A

Gaussian fields estimates

A.1 Method of comparison

One of the basic questions which pops up regularly when studying excursion
of Gaussian fields is the following: given two Gaussian vectors in Rd with close
enough covariance matrix, how close are the excursion probabilities. Here we
recall a generalisation of the classic Berman’s inequality, taken from [Pit96].

Say we’re given n sequence of real numbers, that we call discritising levels,

u(k) = (· · · < u−1(k) < u0(k) < u1(k) < · · · ) k = 1, 2, 3, . . . n.

Consider the σ−algebra U generated by the n-dim rectangles

Πi = {(x1, x2, . . . , xn) : xk ∈ [uik , uik+1(k)}

where i = (i1, . . . , in) ∈ Zn is a multi-index. LetX0 = (X0(1), X0(2), . . . , X0(n))
and X1 = (X1(1), X1(2), . . . , X1(n)) be two independent Gaussian vectors in
Rn with zero mean. Consider an interpolation of these vectors,

Xh =
√
hX1 +

√
1− hX0 0 ≤ h ≤ 1.

Denote by Rh = {rh(i, j) : 1 ≤ i, j ≤ n} the covariance matrix of Xh.

Theorem A.1.1 (Thm 1.2, [Pit96]). With notations as above, if r0(k, k) =
r1(k, k) for all k and |r0(k, l)| < 1 for k ̸= l, then for any B ∈ U , we have

|P(X0 ∈ B)−P(X1 ∈ B)| ≤ 2
n∑

k>l

|r0(k, l)−r1(k, l)|
∑
i,j

∫ 1

0

ϕ(ui(k), uj(k); rh(k, l))dh

where ϕ(x, y; r) is the density of 2-dim Gaussian with covariance r.
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A.2 Asymptotic excursion probability

In this section, we state a result on asymptotic excursion probability of station-
ary smooth Gaussian fields. Let X : Rd → R be a zero mean, unit variance,
stationary C2-smooth Gaussian field. Further assume that (X(s),∇X(s)) is
non-degenerate Gaussian vector.

Theorem A.2.1 (Thm 7.1,[Pit96]). Let r(t, s) be the covariance function of
the field X such that r(t, s) < 1 for t ̸= s. Let A ⊂ Rd be a Jordan set of
positive measure. Then,

P
(
max
t∈A

X(t) > u

)
= Cvol(A)ud−1Ψ(u)(1 + o(1)) as u→ ∞.

Here, the constant C depends only on the field and not on level u, 1−Ψ is cdf
of standard Gaussian.

A.3 Maximum of Gaussian fields

It is a classical fact in probability that expected maximum of n i.i.d. standard
Gaussian random variables behaves asymptotically like

√
2 log n as n → ∞.

Also, it can shown easily that, even if the random variables are dependent,
it cannot exceed

√
2 log n. What is bit surprising is that large number of

Gaussian fields models with correlation decay ‘fast enough’ also have exact
asymptotic

√
2 log n. Examples include 2-dim discrete Gaussian free field, en-

ergy landscape of Sherrington-Kirkpatrick model etc [Cha16]. For asymptotic
distribution of the (centered, normalised) maximum, they are expected to con-
verge to Gumbel distribution.

We have the same asymptotic for stationary smooth Gaussian fields.

Theorem A.3.1 (Thm 14.1, [Pit96]). Let X : Rd → R be centered, unit vari-
ance, C2−smooth Gaussian field with covariance r(t) = E[X(0)X(t)]. Assume
that, for some α > 0, ∫

Rd

|r(t)|αdt <∞.

Then,

P
(

max
t∈[0,R]d

(X(t)− lR)lR < x

)
= exp(− exp(−x))

where lR is the largest solution of the equation

Rd det(ΛX)
1/2

(2π)d−1
ld−1 exp(−l2/2) = 1

and ΛX is the covariance matrix of ∇X(0).

From this theorem we can get exact asymptotic of the expected mean,

E[maxt∈[0,R]d X(t)]
√
2d logR

→ 1 as R → ∞.
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Appendix B

Basic tools

B.1 Kac-Rice formula

Kac-Rice formulas are one of central tools in studying random fields, which
helps us in computation of local observables. For simplicity, consider one
dimensional smooth field f and we’re counting number of zeros of the field in
a given bounded interval I = [a, b]. Let x0 ∈ (a, b) be a zero and a regular
point of f , i.e. f ′(x0) ̸= 0. Given ϵ > 0, for a sufficiently small neighborhood
U of x0, we have

1

2ϵ

∫
U

|f ′(x)|1[|f(x)|≤ϵ]dx = 1

which follows from fundamental theorem of calculus. Now, assuming all zeroes
of f are regular and f(a)f(b) ̸= 0, the number of zeros NI(f) is given by

NI(f) = lim
ϵ→0

1

2ϵ

∫
[a,b]

|f ′(x)|1[|f(x)|≤ϵ]dx

Now applying the same technique to a random field f , taking expectation, we
have the following.

E [NI(f)] = E
[
lim
ϵ→0

∫
[a,b]

|f ′(x)| 1
2ϵ
1[|f(x)|≤ϵ]

]
dx

= lim
ϵ→0

[∫
[a,b]

E
[
|f ′(x)| 1

2ϵ
1[|f(x)|≤ϵ]

]
dx

]
=

∫
[a,b]

E[|f ′(x)||f(x) = 0]pf(x)(0)dx

(B.1)

where pX is the pdf of a Gaussian variable X. The integral, limit and expec-
tation swaps can be justified when the random field follows some regularity.
Even the higher moments can be computed by similar techniques.

Theorem B.1.1 (Gaussian Rice formula, ([AW09], Theorem 3.2) ). Let f be a
C1-smooth Gaussian field on an interval I. Let k be a positive integer. Assume
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that for every k pairwise distinct points t1, t2, . . . , tk the joint distribution of
f(t1), f(t2), . . . , f(tk) does not degenerate. Then,

E[N [k]
I ] =

∫
Ik
E

[
k∏

i=1

|f ′(ti)||f(t1), f(t2), . . . f(tk) = 0

]
pf(t1),f(t2)...f(tk)(0)

k∏
i=1

dti

where m[k] = m(m− 1) · · · (m− k + 1) given m ≥ k, and 0 otherwise.

Observe that f ′(x) is also a Gaussian field and its regularity depends on that of
the field f . Also we know that (f ′(t1), f

′(t2), . . . , f
′(tk), f(t1), f(t2) . . . , f(tk))

is a Gaussian vector. Hence the conditional expectation in the above theorem
can be explicitly computed using the covariance kernel and its derivatives.
Note that the formula is particularly simpler when the field is stationary. We
have,

E[NI ] = Vol(I)E|f ′(0)|/
√
2π

where the field is normalised to be Varf(0) = 1.

There are many directions where we can generalise theorem B.1.1. We can
consider fields in higher dimension, say f : Rd → Rk and ask for the expected
geometric measure of the level sets of f when k ≤ d. There are versions
of Kac-Rice formula for non-Gaussian fields. We can generalise it to fields
on a Riemannian manifold as well. In this article, we used the expected the
Kac-Rice formula for expected lengths of level lines.

Kac-Rice formulas are also important in the analysis of critical points. Geome-
try (and topology) of level/excrusion sets crucially depend on the distribution
(in a deterministic sense) of critical points of the field (see Morse theorems
in classical topology). Also in many cases, even for non-local functionals like
number of connected components of level sets, a pretty good estimates can
obtained from looking at the critical points.

One interesting connection to random matrix theory for computing expected
number of critical points was made by Fyodorov [Fyo04] in the context of
theory of spin glsses. Note that by Kac-Rice formulas, expected number of
critical points can be computed by an integral of conditional expectation of
Hessian of the field. The novel idea of Fyodorov was to express law of Hessian
in terms of a Gaussian Orthonormal Ensemble (GOE) matrices, where explicit
computations are available.

To give an example, we quote a proposition from Cheng and Schwartzmann
[CS18]. Let X be an isotropic Gaussian field on Rd and µ(X) be number of
local maxima of X inside a unit volume ball. Then, under certain conditions
on X, we have

E[µ(X)] = Γ((d+ 1)/2)
2(d+1)/2

π(d+1)/2ηN
EN+1

GOE

[
exp(−λ2d+1/2)

]
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where expectation on RHS is w.r.t to GOE (d+ 1)× (d+ 1) ensembele, λd+1

is the maximum eigenvalue of GOE, η is an explicit constant of the field X.

Refer chapters 3 and 6 of [AW09] or [AT09] for more on Kac-Rice formulas.

B.2 Bulinskaya lemma

While studying nodal geometry of smooth fields, it is desirable that nodal sets
are stable under small perturbation. The particular bad event we want to get
rid of is the event that the random Gaussian function and its gradient are
simultaneously small at some point.

Lemma B.2.1. Let U be an open set in Rn and let g : U → Rn+1 be a random
function. Assume that g ∈ C1(U) a.s. and that the vector g(x) has a density
on Rn+1 that is bounded uniformly over x in compact subsets of U. Then g−1(0)
is almost surely empty.

Now, applying the above lemma to C1-Gaussian field (f,∇f) and assuming
it has a density (i.e. non-degeneracy of f), we get that, almost surely, 0 is a
regular value of f . One immediate consequence of this is, we know that nodal
sets are submanifolds, almost surely.

In [NS16], Nazarov and Sodin stated a quantitative version of Bulinskaya’s
lemma. This is helpful in bounding the probability of “bad events”.

Lemma B.2.2. Let f : U → R be a C2-smooth Gaussian field which is non-
degenerate. Fix a compact subset C ⊂ U . Given δ > 0, there exists τ > 0
(possibly depending on C) such that

P
(
min
x∈C

max{|f(x)|, |∇f(x)|} < τ

)
< δ.

B.3 Borell-TIS inequality

Theorem B.3.1 ([AT09],Theorem 2.1.1). Let f(x) be a Gaussian process on
D. Assume that the process is almost surely bounded on D. Define ||f || =
||f ||D = supD f(x). Then E[||f ||] <∞, and

∀u > 0, P(||f || − E[||f ||] > u) ≤ e−u2/2σ2
D

where σ2
D = supD E[f(x)2]

This theorem holds for continuous Gaussian process, but in the smooth setting
we are guaranteed that on any bounded D, the supremum is a.s. finite, due
to Kolmogorov’s theorem.

Using Borell-TIS inequality, we can bound the tail probability of Ck-norm
of a smooth Gaussian field, see [BM22, Lemma 2.1] for example. Fixing the
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law of the field f and the domain D, P(||f ||Ck > l) is essentially bounded by
exp (−c · l2) where c depends on variances of f and its derivatives on D. This
is bit surprising, since the tail of single Gaussian random variable also has a
similar upper bound.
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