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Part 1:
Brief review on Euler equations and mixed-type problems



Gas dynamics and Euler equations

From Wikipedia:

▶ Gas dynamics is a science in the branch of fluid dynamics,
concerned with the study of motion of gases and its effects on
physical systems.

▶ Progress in gas dynamics coincides with the developments of
transonic and supersonic flights.



Gas dynamics and shock waves

Shock waves occur in many applications.

Schlieren photograph of an attached shock on a sharp-nosed supersonic body.
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Schlieren photograph of an attached shock on a sharp-nosed supersonic body.



Shock wave propagating into a stationary medium, ahead of the fireball of an explosion.



Shock on a bullet in supersonic flight, published by Ernst Mach in 1887.



Shock on a transonic flow airfoil.



Shock of supernova.



NASA Volcano Image Shows Atmospheric Shockwave.







Compressible Euler Equations

Compressible inviscid fluid flow:
ρt +∇ · (ρu) = 0, (conservation of mass)

(ρu)t +∇ · (ρu ⊗ u) +∇p = 0, (conservation of momentum)

Et +∇ · ((E + p)u) = 0. (conservation of energy)

E =
1
2
ρu2 + ρe, p = p(ρ,e).

ρ: density; u: velocity; p: pressure;
E : total energy; e: internal energy.

Other variables:
θ: temperature; S: entropy; τ = 1

ρ : special volume.



First Law of Thermodynamics:

θdS = de + pdτ = de − p
ρ2 dρ.

For a polytropic gas,

p = Rρθ, e = cvθ, γ = 1 +
R
cv

,

p = p(ρ,S) = κργeS/cv , e =
κ

γ − 1
ργ−1eS/cv ,

R > 0: the universal gas constant divided by the effective
molecular weight of the particular gas;
cv > 0: the specific heat at constant volume;
γ > 1: the adiabatic exponent; κ > 0: constant under scaling.

For smooth solutions, the entropy S(ρ,E) is conserved along
fluid particle trajectories:

∂t(ρS) +∇ · (mS) = 0.



Isentropic flow:{
ρt +∇ · (ρu) = 0,
(ρu)t +∇ · (ρu ⊗ u) +∇p = 0.

p =
ργ

γ
, γ > 1.



Elastodynamic equations:
ρt + div(ρu) = 0,
(ρu)t + div (ρu ⊗ u) +∇P(ρ) = div(ρF F⊤),

Ft + u · ∇F = ∇u F.

Magnetohydrodynamic equations:
ρt + div(ρu) = 0,
(ρu)t + div (ρu ⊗ u) +∇p = (∇× H)× H,

Ht −∇× (u × H) = 0, divH = 0.



The general conservation laws:

∂tu +∇ · f(u) = 0, u ∈ Rn, x ∈ Rd , (1)

where f = (f1, · · · , fd) : Rn → (Rn)d is a nonlinear mapping with
fi : Rn → Rn, i = 1, · · · ,d .

The hyperbolicity of system (1) requires that, for any
ω ∈ Sd−1, the matrix (∇f(u) · ω)n×n have n real eigenvalues
λi(u, ω), i = 1,2, · · · ,n, and be diagonalizable.



For the one-dimensional isentropic Euler equations of gas
dynamics {

∂tρ+ ∂xm = 0,

∂tm + ∂x

(
m2

ρ + p
)
= 0,

for x ∈ R and t > 0, m = ρu, with the γ-law for pressure:

p(ρ) = ργ/γ, γ > 1. (2)

For the case 1 < γ ≤ 3, which is of physical significance, the
eigenvalues are

λ1 = u − c, λ2 = u + c,

where c = ρθ, with θ = γ−1
2 ∈ (0,1], is the sound speed.

Strictly hyperbolic if ρ > 0.



A function η : D → R is called an entropy of system (1) if there
exists a vector function q : D → Rd ,q = (q1, . . . ,qd), satisfying

∇qi(u) = ∇η(u)∇fi(u), i = 1, . . . ,d .

An entropy η(u) is called a convex entropy in D if

∇2η(u) ≥ 0 for any u ∈ D

and a strictly convex entropy in D if ∇2η(u) ≥ c0I.



The entropy condition:

∂tη(u) +∇x · q(u) ≤ 0

in the sense of distributions for any C2 convex entropy-entropy
flux pair (η,q).

The relative entropy and entropy flux pair:

α(u,v) = η(u)− η(v)−∇η(v)(u − v),
β(u,v) = q(u)− q(v)−∇η(v)(f(u)− f(v))

satisfies

∂tα(u,v) +∇x · β(u,v)
≤ −{∂t(∇η(v))(u − v) +∇x(∇η(v))(f(u)− f(v))}.



The system (1) is called symmetrizable, if there is a positive
definite symmetric matrix A0(u), such that Ai(u) = A0(u)∇fi(u)
is symmetric. The matrix A0(u) is called the symmetrizing
matrix. Denote A(u) = (A1(u), · · · ,Ad(u)) , then

A0(u)∂tu + A(u)∇u = 0.

Theorem
A system in (1) endowed with a strictly convex entropy η in a
state domain D must be symmetrizable and hence hyperbolic
in D.



For the isentropic Euler equations, the mechanical energy and
energy flux

η∗ =
1
2
|m|2
ρ

+
ργ

γ(γ − 1)
, with m = ρu,

q∗ =
m
ρ

(
1
2
|m|2
ρ

+
ργ

γ − 1

)
is a strictly convex entropy-entropy flux pair when ρ > 0.

The Euler system is a symmetrizable hyperbolic system.



Local Existence of Smooth Solution{
ρt +∇ · (ρu) = 0,
(ρu)t +∇ · (ρu ⊗ u) +∇p = 0,

Cauchy problem for U = (ρ,u):

U|t=0 = U0(x), x ∈ R3.

Theorem (Local existence)
For

U0 ∈ Hs ∩ L∞(R3), s > 5/2, ρ0(x) > 0,

∃ a finite time T ∈ (0,∞), s.t. the Cauchy problem has a
unique smooth solution U ∈ C1 ∩ L∞(R3 × [0,T ]), ρ(x, t) > 0,
and U ∈ C([0,T ];Hs) ∩ C1([0,T ];Hs−1).

• Friedrichs, Lax, Li-Yu; Kato, Majda, Makino-Ukai-Kawashima, Q. Wang, ....



Formation of Singularities
Cauchy problem with smooth initial data:

(ρ,u)|t=0 = (ρ0,u0)(x), ρ0 > 0; (ρ0,u0)(x) = (ρ̄,0), for |x| ≥ R.

Finite propagation speed: σ =
√

pρ(ρ̄) (sound speed),

(ρ,u)(x, t) = (ρ̄,0), if |x| ≥ R + σt .

P(t) =
∫
R3

(
p(x, t)1/γ − p̄1/γ)dx, p̄ = p(ρ̄),

F (t) =
∫
R3 x · ρu(x, t)dx.

Theorem (Sideris, 1985)
If (ρ,u)(x, t) is a C1 solution for 0 < t < T , and

P(0) ≥ 0, F (0) > ασR4 maxx ρ0(x), α = 16π/3,
then the lifespan T of the C1 solution is finite .



▶ Formation of Singularities:
Lax, John, Liu; Klainerman-Majda, Sideris, Rammaha, Hu-W.,
Christodoulou-Miao, Luk-Speck, An-Chen-Yin,
Buckmaster-Shkoller-Vicol, ....

▶ Formation of shocks for 2D isentropic compressible Euler
(Buckmaster-Shkoller-Vicol, 2022)
(Rough statement) For an open set of smooth initial data with O(1)
amplitude and with minimum initial slope given at initial time t0 to
equal −1/ε, for ε > 0 taken sufficiently small, there exist smooth
solutions of the Euler equations with O(1) vorticity, which form
an asymptotically self-similar shock in finite time T∗, such that
T∗ − t0 = O(1).



Isentropic Euler Equations: weak solutions

{
ρt +∇ · (ρu) = 0,
(ρu)t +∇ · (ρu ⊗ u) +∇p = 0,

1-D Problem:
▶ Small BV solution: Glimm scheme, wave-front tracking,

vanishing viscosity;
Glimm, Glimm-Lax, Liu, Dafermos, Bressen, Liu-Yang, Bianchini-Bressan, Vasseur, and many others ......

▶ Large L∞ solution: vanishing viscosity, finite difference,
kinetic formulation, via compensated compactness
methods.
DiPerna, Ding-Chen-Luo, Chen, Lions-Perthame-Souganidis-Tadmor, Chen-LeFloch, Huang-Wang (γ = 1),

......

Other studies: surveyed in Dafermos’ book.
Hsiao-Zhang, Slemrod, Smoller, Nishida, Chen-LeFloch, Pan, Huang, Serre, Luo, Jessen, Liu-Yang, Goodman-Xin,
Temple-Young, Li, Greenberg-Rascle, Chen-Wang, Tzavaras, Jin-Xin, Wang, Keyfitz, Chen-Frid, Shearer, Lewicka,
Christoforou, Trivisa, Holden-Risebro, Zumbrunn, Dafermos-Pan, Huang-Pan, LeFloch-Westdickenberg,
Gangbo-Westdickenberg, De Lellis-Szekelyhidi, ......
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M-D Problem

Very difficult: 1-D methods do not work.

Lots of progress recently:
Morawetz, Gamba-Morawetz, Canic-Keyfitz-Lieberman-Kim-Jedgic, Chen-Feldman, Zheng, Li-Zheng,
Serre, Xin-Yin, Hunter, Zhang, S.-X. Chen, Liu-Elling, Chen-Dafermos-Slemrod-Wang, Xin-Xie,
Chen-Slemrod-Wang, Chen-Wang-Yang, LeFloch-Westdickenberg, Luo-Smoller,
Gangbo-Westdickenberg, Bae-Chen-Feldman, ......

Convex integration: De Lellis-Szekelyhidi, Chen-Vasseur-Yu, ......



Complex Structures of 2-D Riemann Solutions
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Recent work: Chen-Cliffe-Huang-Liu-Wang, 2023.
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M-D compressible flows: mixed-type, free boundary

Riemann problems,

self-similar solutions,

shock reflections,

transonic flows,

vortex sheets and interfaces,

......



The general linear second-order equation with two independent
variables for u(x , y) :

auxx + 2buxy + cuyy + dux + euy + fu = g,

where a,b, c,d ,e, f ,g are given functions of (x , y).

The characteristic equation:

aλ2 − 2bλ+ c = 0.

The eigenvalues:

λ =
b ±

√
b2 − ac
a

.

The equation is hyperbolic if the characteristic equation has two real distinct
eigenvalues (b2 − ac > 0), is elliptic if it has no real eigenvalues
(b2 − ac < 0), and is parabolic if it has one real eigenvalues (b2 − ac = 0).

Or, it is called elliptic if all eigenvalues of the matrix

A =
[

a b
b c

]
have the same sign, parabolic if A is singular, and hyperbolic if the two
eigenvalues of A have the opposite signs.



Basic equations of three types

Laplace equation: elliptic

∆u = 0.

Heat equation: parabolic

ut −∆u = 0.

Wave equation: hyperbolic

utt −∆u = 0.



Equations of mixed types: with fixed boundary

The Tricomi equation

uxx − xuyy = 0.

The Keldysh equation: (also called the Cinquini-Cibrario’s equation sometimes)

uxx − yuyy = 0.

Lavrentyev-Bitsadze equation:

uxx + sin(x)uyy = 0.



Equations of mixed types: with free boundary

• The equation:
uxx − uuyy = 0,

is hyperbolic if u > 0, elliptic if u < 0, and parabolic if u = 0. So
it is of mixed type, and the boundary u = 0 separating the
hyperbolic and elliptic parts is a free boundary.



• The equation for a two-dimensional steady potential flow is:

(c2 − u2)φxx − 2uvφxy + (c2 − v2)φyy = 0,

where (u, v) = ∇φ = (φx , φy ), φ is the velocity potential, and c is the
sound speed given by the Bernoulli’s law:

c2 = 1 − γ − 1
2

(
u2 + v2) ,

with γ > 1 constant. The characteristic equation is

(c2 − u2)λ2 + 2uvλ+ (c2 − v2) = 0,

with eigenvalues

λ =
−uv ± c

√
u2 + v2 − c2

c2 − u2 .

Thus the equation is hyperbolic if u2 + v2 > c2 (i.e., supersonic),
elliptic if u2 + v2 < c2 (i.e., subsonic), and parabolic if u2 + v2 = c2

(i.e., sonic). It is of mixed type, and the sonic curve u2 + v2 = c2 is a
free boundary.

Chen-Feldman 2018 (Research Monograph): The Mathematics of Shock
Reflection-Diffraction and von Neumann’s Conjectures, 832 pages, Annals of
Mathematics Studies, 197, Princeton University Press, 2018.



Mathematical Challenges of Mixed-Type PDEs

▶ The transition boundary between the elliptic and hyperbolic
phases is a priori unknown, thus most of the classical
approaches do not work.

▶ New approaches are needed to deal with the free
boundary problems, including optimal estimates of
solutions to nonlinear degenerate PDEs, corner
singularities, ......





Part 2:
Transonic flows past obstacles and in nozzles



Transonic flows in gas dynamics

Transonic flows occur in gas dynamics, astronomy,
astrophysics, and so on.

▶ Transonic flow is where air flows above, at, and below the
speed of sound at the same time at different points on an
object.

▶ Supersonic flow, sonic flow, subsonic flow.

▶ Singularities: shock wave, rarefaction wave, contact
discontinuity, ...



M=Mach number= flow speed
sound speed M<1: elliptic, M>1: hyperbolic.



Lau-Chapdelaine, S.SM., Radulescu, M.I. Non-uniqueness of solutions in asymptotically self-similar shock

reflections. Shock Waves 23, 595-602 (2013).



G.-Q. Chen, Morawetz’s contributions to the mathematical theory of transonic flows, shock waves, and partial
differential equations of mixed type. Bull. Amer. Math. Soc. (N.S.)61(2024), no.1, 161-171.

G.-Q. Chen, M. Feldman, The mathematics of shock reflection-diffraction and von Neumann’s conjectures. Annals
of Mathematics Studies, vol. 197, Princeton University Press, Princeton, NJ, 2018.



https://psaap.stanford.edu/heat_release_modeling/temperature_imaging.html

https://psaap.stanford.edu/heat_release_modeling/temperature_imaging.html


Transonic flow past an airfoil







From Airplane Flying Handbook
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2-D Euler Equations for Steady Irrotational Flows
vx − uy = 0,
(ρu)x + (ρv)y = 0,
(ρu2 + p)x + (ρuv)y = 0,
(ρuv)x + (ρv2 + p)y = 0,

p = p(ρ) = ργ/γ, γ ≥ 1.

Bernoulli’s law:

ρ =

(
1 − γ − 1

2
q2

) 1
γ−1

, or q2 − q2
cr =

2
γ + 1

(
q2 − c2

)
,

where q2 = u2 + v2, c2 = p′(ρ) = 1 − γ−1
2 q2,

qcr ≡
√

2
γ+1 , q ≤ qcav ≡

√
2

γ−1 .

The flow is subsonic if q < qcr , sonic if q = qcr ,

and supersonic if q > qcr .
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Subsonic Flow

Existence of subsonic solutions: Bers, Shiffman (50’s)

For a given w∞ = (u∞, v∞), there exists q̂ < qcr , s.t.
the problem has a unique subsonic solution (u, v) for
q∞ := |w∞| < q̂ . The maximum speed qm → qcr as
q∞ → q̂.

Bers, Shiffman, Serrin, Finn, Gilbarg, Dong, J. Chen, C. Wang-Xie-Xin, ...



Subsonic-Sonic Flow

qm → qcr as q∞ ↗ q̂: sonic points appear.

Existence of sonic-subsonic solutions:
Chen-Dafermos-Slemrod-D.W. (CMP)

Let qε
∞ < q̂ be a sequence of speeds at ∞, and let (uε, vε) be

the corresponding subsonic solutions, then, as qε
∞ ↗ q̂, the

sequence (uε, vε) possesses a subsequence that converges
strongly to a weak solution (u, v) with q = |(u, v)| ≤ qcr .

Approach: compensated compactness, momentum equations.



Subsonic-Sonic Flow

qm → qcr as q∞ ↗ q̂: sonic points appear.

Existence of sonic-subsonic solutions:
Chen-Dafermos-Slemrod-D.W. (CMP)

Let qε
∞ < q̂ be a sequence of speeds at ∞, and let (uε, vε) be

the corresponding subsonic solutions, then, as qε
∞ ↗ q̂, the

sequence (uε, vε) possesses a subsequence that converges
strongly to a weak solution (u, v) with q = |(u, v)| ≤ qcr .

Approach: compensated compactness, momentum equations.



Subsonic-Sonic Flow

qm → qcr as q∞ ↗ q̂: sonic points appear.

Existence of sonic-subsonic solutions:
Chen-Dafermos-Slemrod-D.W. (CMP)

Let qε
∞ < q̂ be a sequence of speeds at ∞, and let (uε, vε) be

the corresponding subsonic solutions, then, as qε
∞ ↗ q̂, the

sequence (uε, vε) possesses a subsequence that converges
strongly to a weak solution (u, v) with q = |(u, v)| ≤ qcr .

Approach: compensated compactness, momentum equations.



Compensated Compactness

Recall: for a sequence uk : Ω → Rm bounded in L∞(Ω), there
exists a subsequence (still denoted) uk and a function
u ∈ L∞(Ω) such that uk

∗
⇀ u in L∞(Ω), i.e.,∫

Ω
ukgdx →

∫
Ω

ugdx , as k → ∞,

for each g ∈ L1(Ω).

For a continuous function f ∈ C(Rm), f (uk ) is bounded in
L∞(Ω;Rm) and thus f (uk )

∗
⇀ f . The question is:

f = f (u)?

The answer is no, in general.



A counterexample:

Take uk = sin kx , ϕ ∈ C1
0(R) a test function with compact

support. Then∫
R
sin kx ϕ(x)dx =

1
k

∫
R
cos kx ϕ′(x)dx → 0, as k → ∞

since
∫
R cos kx ϕ′(x)dx is bounded; but, for

u2
k = sin2 kx =

1
2
(1 − cos2kx),

∫
R
sin2 kxϕ(x)dx =

1
2

∫
R
ϕ(x)dx − 1

2

∫
R
cos2kxϕ(x)dx → 1

2

∫
R
ϕ(x)dx .

Thus,

uk = sin kx ∗
⇀ u = 0, u2

k = sin2 kx ∗
⇀

1
2
̸= u2 = 0.



Lemma (Tartar) Suppose that vε : R2
+ = R× [0,∞) → Rm is a

sequence of uniformly bounded measurable functions, i.e.,

vε(x , t) ∈ K , a.e.

for a bounded set K ∈ Rm, and that, for two function pairs
(ηi ,qi), i = 1,2,

ηi(vε)t + qi(vε)x is compact in H−1
loc .

Then there exists a subsequence (still labeled vε) and Young
measures

νx ,t : R2
+ → Prob(Rm), supp νx ,t ⊂ K ,

such that



(1). For any continuous function f , the weak limit has the
following Young measure representation,

w∗- lim f (vε) = ⟨νx ,t(λ), f (λ)⟩ =
∫
Rm

f (λ)dνx ,t(λ),

and the Young measure νx ,t commutes with the 2 × 2
determinant mapping acting on the function pairs, that is, the
following commutativity relation holds,

⟨νx ,t , η1q2 − η2q1⟩ = ⟨νx ,t , η1⟩⟨νx ,t ,q2⟩ − ⟨νx ,t , η2⟩⟨νx ,t ,q1⟩.

(2). vε(x , t) → v(x , t) strongly if and only if νx ,t is a Dirac
mass, i.e.,

νx ,t = δu(x ,t), a.e. in R2
+.



Compensated Compactness for Subsonic-Sonic Flow
wε(x , y) = (uε, vε)(x , y), (x , y) ∈ Ω ⊂ R2:

(1) qε(x , y) = |wε(x , y)| ≤ qcr a.e. in Ω;
(2) ∂xηk (wε) + ∂yqk (wε), k = 1,2, are compact in H−1

loc (Ω),

where (η1,q1) = (ρu2 + p, ρuv), (η2,q2) = (ρuv , ρv2 + p).

Then, the div-curl lemma (Tartar-Murat) implies the
commutation identity:

⟨ν(w), ηi(w)qj(w)− qi(w)ηj(w)⟩
= ⟨ν(w), ηi(w)⟩⟨ν(w),qj(w)⟩ − ⟨ν(w),qi(w)⟩⟨ν(w), ηj(w)⟩,

where ν = νx ,y (w) is the associated Young measure
(probability measure) for the sequence wε(x , y).

Claim: ν is a Dirac measure.
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commutation identity:

⟨ν(w), ηi(w)qj(w)− qi(w)ηj(w)⟩
= ⟨ν(w), ηi(w)⟩⟨ν(w),qj(w)⟩ − ⟨ν(w),qi(w)⟩⟨ν(w), ηj(w)⟩,

where ν = νx ,y (w) is the associated Young measure
(probability measure) for the sequence wε(x , y).

Claim: ν is a Dirac measure.
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Proof of Convergence

⟨ν(w1)⊗ ν(w2), I(w1,w2)⟩ = 0,

where

I(w1,w2)

=
(
η1(w1)− η1(w2))(q2(w1)− q2(w2)

)
−
(
q1(w1)− q1(w2))(η2(w1)− η2(w2)

)
= −ρ1ρ2(u1v2 − u2v1)

2 − γ + 1
γ − 1

(p1 − p2)
2 q2

cr − q̃2

2
γ−1 − q̃2

≤ 0,

where q̃ ≤ qcr is between q1 and q2.

• Extension to higher-dimensions, full Euler equations, or other related
problems:

F.-M. Huang-T. Wang-Y. Wang, C. Wang-Xie-Xin, ....
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Transonic Flow

q∞ > q̂: transonic flow.

L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, 1958, pp. 3, & 135:

These (transonic flow) problems, while admittedly difficult, are exceed-
ingly challenging and give is a glimpse of the long lost golden age of the
unity of science. Indeed, physicists interested in them demand rigorous
mathematical proofs, ...

It is hardly necessary to point out how interesting it would be to obtain
general existence theorems and effective methods of computation for the
type of flow considered here in the case where the profile is an arbitrarily
given curve. This problem is probably rather different.

Courant-Friedrichs, Supersonic Flow and Shock Waves, 1962, pp 367:

... even then a rigorous proof seems beyond the present possibilities of
analysis, ...
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Morawetz’s work

Morawetz: 1985, 1995, 2004

If the viscous approximation problem{
vx − uy = R1,

(ρu)x + (ρv)y = R2,

with Bernoulli’s law: ρ = ρ(q) =
(

1 − γ−1
2 q2

) 1
γ−1

,

(where R1 and R2 are the artificial viscosity terms to be
determined,) yields approximate solutions satisfying the
compensated compactness framework, then the viscous
solutions converge to a solution of the transonic flow problem.

?? Viscous problem ??



An Effective Viscous Problem
Chen-Slemrod-D.W. (ARMA)

Polar coordinates in the phase plane:

u = q cos θ, v = q sin θ.

The viscous problem:{
vx − uy = R1 = ε∆θ,

(ρu)x + (ρv)y = R2 = ε∇ · (σ2(ρ)∇ρ) ,

where σ2 is positive, smooth, bounded, satisfying

σ2 = 1 − c2

q2 for q >
2√

3 − γ
c > c (q >

√
2qcr ),

1 ≤ γ < 3, c2 = p′(ρ) = 1 − γ − 1
2

q2.



Boundary Conditions

∂Ω2

(a)

Ω

∂Ω1

Ω

∂Ω2

∂Ω1

(b)
∇θ · n = 0 on ∂Ω1,

εσ2∇ρ · n = −|ρ (u, v) · n| on ∂Ω1,

(u, v)− (u∞, v∞) = 0 on ∂Ω2 with q∞ < qcav ,



Riemann Invariants

[
− sin θ −q cos θ

c2−q2

c2q cos θ − sin θ

] [
q
θ

]
x
+

[
cos θ −q sin θ

c2−q2

c2q sin θ cos θ

] [
q
θ

]
y
=

[−R1
1
ρq R2

]
.

Eigenvalues and left eigenvectors:

λ± = − sin θ ±
√

q2−c2

c cos θ, µ± = cos θ ±
√

q2−c2

c sin θ;

(
∓
√

q2−c2

qc , 1
)
.

The Riemann invariants W±:

∂W±

∂θ
= 1,

∂W±

∂q
= ∓

√
q2 − c2

qc
for q ≥ c,

satisfy

λ±
∂W±

∂x
+ µ±

∂W±

∂y
= −∂W±

∂q
R1 +

1
ρq

∂W±

∂θ
R2.



Invariant Regions

1 ≤ γ < 3

0

W+ = θ0

q =
√

2qcr

q = qcr

θ0

W− = θ0

q = qcav

u

v



0

W+ = θ0

q =
√

2qcr

q = qcr

θ0

u

v

W− = θ0

W+ = π + θ0

W− = π + θ0

q = qcav

Λ(
√

2qcr, θ0) ∩ Λ(
√

2qcr, π + θ0)



0

q =
√

2qcr

q = qcr

θ0

u

v

q = qcav



Compensated Compactness and Convergence
wε(x , y) = (uε, vε)(x , y), (x , y) ∈ Ω ⊂ R2:

(1) qε(x , y) = |wε(x , y)| ≤ q∗ a.e. in Ω, for some positive constant
q∗ < qcav < ∞;

(2) ∂xQ1±(wε) + ∂y Q2±(wε) are compact in H−1
loc (Ω), for the

entropy-entropy flux pairs (Q1,Q2),

⟨ν(w),Q1+(w)Q2−(w)− Q1−(w)Q2+(w)⟩
= ⟨ν(w),Q1+(w)⟩⟨ν(w),Q2−(w)⟩ − ⟨ν(w),Q1−(w)⟩⟨ν(w),Q2+(w)⟩,

where ν = νx ,y (w),w = (u, v), is the Young measures for
wε(x , y),

⟨ν(w)⊗ ν(w ′), I(w ,w ′)⟩ = 0,

I(w ,w ′) =(Q1+(w)− Q1+(w ′))(Q2−(w)− Q2−(w ′))

− (Q2+(w)− Q2+(w ′))(Q1−(w)− Q1−(w ′)),

ν is a Dirac measure.
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The Entropy-Entropy Flux Pairs (Q1,Q2)

Q1x + Q2y = −VθR1 +
q2

c2 − q2 VρR2,

with
c2

ρq
Vθθ +

(
q2

c2 − q2 Vρ

)
ρ

= 0.

Generators H: (µ′(ρ) = c2/q2)

ρHµθ − Hθ = −Vθ, Hµ +
1
ρ

Hθθ =
q2

c2 − q2 Vρ,

satisfying the generalized Tricomi equation:

Hµµ +
1
ρ2 (1 − M2)Hθθ = 0, M = q/c,

The Loewner-Morawetz relation:

Q1 = ρqHµ cos θ − qHθ sin θ, Q2 = ρqHµ sin θ + qHθ cos θ.



Existence of Transonic Solution: Chen-Slemrod-D.W.

Let v∞ = 0, |u∞| < qcav , and 1 ≤ γ < 3. Assume qε(x , y) ≥ α(δ) > 0
for any (x , y) ∈ Ωδ = {(x , y) ∈ Ω : dist((x , y), ∂Ω1 ≥ δ > 0} for some
α(δ) → 0 as δ → 0, and ∥θε∥L∞ ≤ C. Then,

(1) The support of the Young measure νx,y strictly excludes the
stagnation point q = 0 and the Young measure is a Dirac mass;

(2) The sequence (uε, vε) has a subsequence converging strongly
in L2

loc(Ω) to an entropy solution.

(iii) The boundary condition (u, v) · n ≥ 0 on ∂Ω1 is satisfied in the
sense of normal trace.

Recent work: γ = 3 by G.-Q. Chen-T. Giron-S. Schulz.
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Transonic flows in nozzles

Earlier works for flows in nozzles:

– Compressible flows in nozzles:
Courant-Friedrichs, Chen-Deng-Xiang, Cheng-Du-Xiang, Du-Xie-Xin, Wang-Xin, Xie-Xin, Chen-Huang-Wang-Xiang,

..............

– Transonic shocks in nozzles:
S.-X. Chen, Chen-Feldman, Chen-Chen-Feldman, Chen-Yuan, Fang,-Xin, Li,-Xin-Yi, ...........

– Contact discontinuity:
Bae-Park, Huang-Kuang-W.- Xiang, ......



Consider the stability of steady transonic contact discontinuity
for the compressible flows in a two-dimensional (2D) finitely
long nozzle:

∂x(ρu) + ∂y (ρv) = 0,

∂x(ρu2 + p) + ∂y (ρuv) = 0,

∂x(ρuv) + ∂y (ρv2 + p) = 0,

∂x
(
(ρE + p)u

)
+ ∂y

(
(ρE + p)v

)
= 0,

E =
1
2
(u2 + v2) + e(ρ, p), p = A(S)ργ , e =

κ

γ − 1
ργ−1e

S
cν , A(S) = κe

S
cν .

The Bernoulli function B = 1
2(u

2 + v2) + γp
(γ−1)ρ and the entropy

S satisfy

u∂xB + v∂yB = 0 and u∂xS + v∂yS = 0.

Set V = (p,B,S).
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The domain in the nozzle:

Ω :=
{
(x , y) ∈ R2 : 0 < x < L, g−(x) < y < g+(x)

}
,

Γ+

Γ−

Γcd

Ω(e)

Ω(h)

V (e)
0 (y)

U(h)
0 (y)

ωe(y)

x = 0 x = L

The location of the contact discontinuity:

Γcd =
{

y = gcd(x), 0 < x < L
}
.



Background solution
Transonic flow in a flat nozzle with contact discontinuity:

y = 0

V (e)

U(h)

ωe = 0
y = 1

y = −1
x = 0 x = L

Ω

The solution in the subsonic region:

U(e) := (u(e),0,p(e), ρ(e))⊤.

The solution in the supersonic region:

U(h) :=
(
u(h),0,p(h), ρ(h)

)⊤
.



The initial incoming flow U0(y) at x = 0:

U0(y) =

 V (e)
0 (y), y ∈ Γ

(e)
in ,

U(h)
0 (y), y ∈ Γ

(h)
in .

On the nozzle walls Γ− and Γ+:(
u(h), v (h)) · n− = 0 on Γ−,

(
u(e), v (e)) · n+ = 0 on Γ+.

Along the contact discontinuity y = gcd(x), the following
Rankine-Hugoniot conditions hold:

(u, v) · ncd = 0,
[v

u

]
= [p] = 0, on Γcd.

In Ω(e), the flow slope at the exit Γ(e)ex is given by

ω(e)(L, y) = ωe(y),

with
ωe(gcd(L)) =

v
u
(L,gcd(L)).



Stability of contact discontinuity:

– Subsonic-subsonic: Bae-Park (’13, ’19)

– Supersonic-supersonic: Huang-Kuang-W.- Xiang (’19)



Problem

Huang-Kuang-W.- Xiang

For a given transonic incoming flow U0(y) at the entrance and a
given flow slope ωe(y) at the exit Γ(e)ex , find a unique piecewise
smooth transonic solution

(
U(x , y),gcd(x)

)
that is separated by

the contact discontinuity Γcd satisfying the Euler system in the
weak sense and the boundary conditions. The solution is a
small perturbation of the background solution (U,0).



Theorem (Main Theorem, Huang-Kuang-W.- Xiang, Ann. PDE )
There exist constants α0 ∈ (0, 1) and ϵ0 > 0 depending only on U and L,
such that for any given α ∈ (0, α0) and ϵ ∈ (0, ϵ0), if∥∥V (e)

0 − V (e)∥∥
1,α;Γ

(e)
in

+
∥∥U(h)

0 − U(h)∥∥
1,α;Γ

(h)
in

+
∥∥ωe

∥∥(−1−α,{Pe,Qe})
2,α;Γ

(e)
ex

+
∥∥g− + 1

∥∥
2,α;Γ−

+
∥∥g+ − 1

∥∥
2,α;Γ+

≤ ϵ,

and M(h) = u(h)

c(h)
>

√
1 + 1

4 L2, there exists a unique solution

(U(x , y), gcd) ∈ H1
loc(Ω)× C2,α([0, L)) such that

(i) The solution U consists of the supersonic flow U(h) ∈ C1,α(Ω(h)) and
subsonic flow U(e) ∈ C1,α

(−α,Σ(e)\{O})(Ω
(e)) separated by y = gcd(x), and the

following estimate holds:∥∥U(e) − U(e)∥∥(−α,Σ(e)\{O})
1,α;Ω(e) +

∥∥U(h) − U(h)∥∥
1,α;Ω(h) ≤ C0ϵ;

(ii) The contact discontinuity y = gcd(x) is a stream line with gcd(0) = 0 and
satisfies

∥∥gcd
∥∥

2,α;Γcd∪{O} ≤ C0ϵ, where C0 > 0 is a constant depending only
on U and L.



Main approaches and difficulties

– Straighten the free boundary of contact discontinuity by the
Euler-Lagrangian coordinate transformation, but get a new free
boundary on the upper wall.

– Solve the nonlinear second-order elliptic equation in the
subsonic region for the stream function.

– Solve the hyperbolic system in the supersonic region.

– Develop an iteration scheme, and show convergence by
contraction.

Many open problems!
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Part 3:
Transonic flows in isometric embeddings



Isometric Embedding

Isometric embedding in differential geometry, with applications in:

◆ shell theory,

◆ computer sciences,

◆ protein folding (Mathematical Challenge Ten of DARPA),

◆ · · · · · ·

Janet, Cartan, Nash, Kuiper, Gromov, Günther, Yau, Nakamura, Nirenberg, Lin, Hong, Han, Pogorelov, Y. Li,

Guan-Li, Efimov, Bryant-Griffiths-Yang, Nakamura-Maeda, Han-Khuri, Lewicka-Pakzad, Christoforou, Poole,

Cao-Szekelyhidi, ......





Isometric Embedding of Md into RN

Nash (1965), Günther (1989): smooth embeddings.

Günther (1989): Any smooth d-dimensional compact
Riemannian manifold admits a smooth (i.e. C∞) isometric
embedding in RN for

N =
1
2
max{d(d + 5),d(d + 3) + 10}.

Janet dimension:
N =

1
2

d(d + 1).

Example – isometric embedding of surfaces : d = 2, N = 3.
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Isometric Embedding of Surfaces in R3

gij , i, j = 1, 2 : the given metric of a 2-D Riemannian manifold M defined on Ω ⊂ R2.

The first fundamental form:

I := g11(dx)2 + 2g12dxdy + g22(dy)2.

The isometric embedding problem is to seek a map

r : Ω → R3

such that
dr · dr = I,

that is,

∂xr · ∂xr = g11, ∂xr · ∂y r = g12, ∂y r · ∂y r = g22,

so that {∂x r, ∂y r} in R3 are linearly independent.
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The fundamental theorem of surface theory

The second fundamental form:

II := h11(dx)2 + 2h12dxdy + h22(dy)2.

There exists a surface in R3 with the fundamental forms I and II
if (gij) and (hij) (with (gij) > 0) satisfy the Gauss-Codazzi
system.

This theorem holds even when (hij) ∈ L∞ for given

(gij) ∈ C1,1, for which the immersion surface is C1,1. Mardare (2003)



Gauss-Codazzi Equations

{
∂xM − ∂yL = Γ

(2)
22 L − 2Γ(2)12 M + Γ

(2)
11 N,

∂xN − ∂yM = −Γ
(1)
22 L + 2Γ(1)12 M − Γ

(1)
11 N,

LN − M2 = κ, (Monge-Ampère constraint)

where

L =
h11√
|g|

, M =
h12√
|g|

, N =
h22√
|g|

, |g| = det(gij) = g11g22 − g2
12,

κ(x , y) =
R1212

|g| , Rijkl = glm

(
∂kΓ

(m)
ij − ∂jΓ

(m)
ik + Γ

(n)
ij Γ

(m)
nk − Γ

(n)
ik Γ

(m)
nj

)
,

Γ
(k)
ij =

1
2

gkl (∂jgil + ∂igjl − ∂lgij) . (Christoffel symbol)



Mixed Type
Consider (M,N) as the state variables. If N ̸= 0, the
eigenvalues are

λ± =
−M ±√−κ

N
.

The Gauss-Codazzi system is

hyperbolic if κ < 0,

elliptic if κ > 0,

parabolic if κ = 0.

The Gauss curvature κ may change sign, thus the system is of
mixed hyperbolic-elliptic type.

• Local isometric embedding of 2d and 3d manifolds with Gauss curvature changing sign cleanly:

C.-S. Lin, Q. Han, T. Poole......
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A Fluid Dynamic Formulation: Chen-Slemrod-D.W.

L = ρv2 + p, M = −ρuv , N = ρu2 + p,

{
∂x(ρuv) + ∂y (ρv2 + p) = −(ρv2 + p)Γ(2)22 − 2ρuvΓ(2)12 − (ρu2 + p)Γ(2)11 ,

∂x(ρu2 + p) + ∂y (ρuv) = −(ρv2 + p)Γ(1)22 − 2ρuvΓ(1)12 − (ρu2 + p)Γ(1)11 ,

ρpq2 + p2 = κ, q2 = u2 + v2.

Chaplygin-type gas: p = −1
ρ . The “Bernoulli" relation:

ρ =
1√

q2 + κ
, p = −

√
q2 + κ; c2 = q2 + κ, c2 = p′(ρ) =

1
ρ2 .

Mixed type: κ > 0, subsonic, elliptic; κ < 0, supersonic,
hyperbolic; κ = 0, sonic, degenerate.

L∞ solution =⇒ C1,1 immersion.
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Isometric embeddings with negative Gauss curvatures

▶ Isometric embeddings with positive Gauss curvatures:
elliptic problem, many works.

▶ Isometric embeddings with negative Gauss curvatures:
hyperbilic problem, only a few results.

Quote from S.-T. Yau, Review of geometry and analysis. Asian J. Math.
4 (2000), 235-278.

“The isometric problem for surfaces of negative curvature
is a very interesting nonlinear hyperbolic problem. As such,
it is very difficult to prove global existence theorems for
such surfaces."



L∞ weak solutions – C1,1 isometric immersions

1. Fluid dynamics approach
(joint with G.-Q. Chen and M. Slemrod, CMP),

2. Vanishing artificial viscosity approach
(joint with W. Cao and F.-M. Huang, ARMA),

3. Finite difference approximation approach
(joint with W. Cao and F.-M. Huang, SIMA).



Fluid dynamics approach
Chen-Slemrod-W.

κ < 0: κ = −γ2, γ > 0.

Rescale (L,M,N):

L̃ =
L
γ
, M̃ =

M
γ
, Ñ =

N
γ
, ⇒ L̃Ñ − M̃2 = −1.

A viscous approximation:{
∂x(ρuv) + ∂y (ρv2 + p) = R1 + ε∂2

y (ρv),
∂x(ρu2 + p) + ∂y (ρuv) = R2 + ε∂2

y (ρu),

where
R1 := −(ρv2 + p)Γ̃(2)

22 − 2ρuv Γ̃(2)
12 − (ρu2 + p)Γ̃(2)

11 ,

R2 := −(ρv2 + p)Γ̃(1)
22 − 2ρuv Γ̃(1)

12 − (ρu2 + p)Γ̃(1)
11 ,

Γ̃
(1)
11 = Γ

(1)
11 +

γx

γ
, Γ̃

(1)
12 = Γ

(1)
12 +

γy

2γ
, Γ̃

(1)
22 = Γ

(1)
22 ,

Γ̃
(2)
11 = Γ

(2)
11 , Γ̃

(2)
12 = Γ

(2)
12 +

γx

2γ
, Γ̃

(2)
22 = Γ

(2)
22 +

γy

γ
.



Invariant Region

B

0
1

q0

α β

θ+

θ+

θ−

θ−

u

v

θ+

θ−

W− W+

W−

W+

A

Catenoid: g11 = g22 = (cosh(cx))
2

β2−1 , g12 = 0, κ(x) = −κ0E(x)−β2
, c ̸= 0, κ0 > 0, β >

√
2.



* Christoforou: small BV solution for catenoid.
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Passing the Limit{
∂xM − ∂yL = Γ

(2)
22 L − 2Γ(2)12 M + Γ

(2)
11 N,

∂xN − ∂yM = −Γ
(1)
22 L + 2Γ(1)12 M − Γ

(1)
11 N,

LN − M2 = κ, (Monge-Ampère constraint)

Theorem (Weak Continuity of a 2 × 2 Determinant)
Let Ω ⊂ R× R+ = R2

+ be a bounded open set and
uε = (uε

1 , u
ε
2 , u

ε
3 , u

ε
4 ) : Ω → R4 be measurable functions satisfying

uε ⇀ u = (u1, u2, u3, u4) in L2
4(Ω),

and
∂uε

1

∂t
+

∂uε
2

∂x
,

∂uε
3

∂t
+

∂uε
4

∂x
are compact in H−1

loc (Ω).

Then there exists a subsequence (still labeled) uε such that∣∣∣∣uε
1 uε

2
uε

3 uε
4

∣∣∣∣ ⇀ ∣∣∣∣u1 u2

u3 u4

∣∣∣∣ in the sense of distributions.



Vanishing artificial viscosity approach

Joint with W. Cao and F.-M. Huang.

Artificial viscosity:{
L̃y − M̃x = εL̃xx − Γ̃2

22L̃ + 2Γ̃2
12M̃ − Γ̃2

11Ñ,

M̃y − Ñx = εM̃xx + Γ̃1
22L̃ − 2Γ̃1

12M̃ + Γ̃1
11Ñ,

with
L̃Ñ − M̃2 = −1,

where
L̃ =

L
γ
, M̃ =

M
γ
, Ñ =

N
γ
, κ = −γ2.



The eigenvalues and Riemann invariants are:

−M̃ ± 1
L̃

.

Introduce new variables:

u = −M̃
L̃
, v =

1
L̃
.

{
uy + (uux − vvx) = f (u, v) + εuxx − 2εux vx

v ,

vy + (uvx − vux) = g(u, v) + εvxx − 2εv2
x

v ,

with{
f (u, v) = −Γ̃1

22 + (Γ̃2
22 − 2Γ̃1

12)u + (2Γ̃2
12 − Γ̃1

11)u
2 + Γ̃1

11v2 + Γ̃2
11(u

2 − v2)u,
g(u, v) = Γ̃2

22v + Γ̃2
12uv + Γ̃2

11(u
2 − v2)v .



The eigenvalues are

λ1 = u − v , λ2 = u + v .

The Riemann invariants are:

w = u + v , z = u − v .

{
wy + λ1wx = εwxx − 2εvx wx

v + f (u, v) + g(u, v),
zy + λ2zx = εzxx − 2εvx zx

v + f (u, v)− g(u, v).



Invariant regions
First fundamental form:

I = Edx2 + 2Fdxdy + Gdy2.

1. Catenoid-type surfaces:

E(y) = (c cosh(y/c))
2

β2−1 , F = 0, G(y) =
1

c2(β2 − 1)2 E(y),

κ(y) = −c2(β2 − 1)E(y)−β2
, c ̸= 0, β ≥

√
2.

2. Helicoid-type surfaces:

E(y) = c2 + y2, F = 0, G(y) = 1,

κ(y) = − c2

(c2 + y2)2 , c ̸= 0.





Christoforou and Slemrod (2015): Gauss curvature decays as in Hong (1993).
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Cell 154, July 18, 265-266, 2013.
Terasaki, M., Shemesh, T., Kasthun, N., Klemm, R.W., Schalek, R., Hayworth, K.H., Hand, A.R., Yankova, M.,

Huber, G., Lichtman, J.W., et al. (2013). Cell 154, July 18, 285-296.



Finite difference approximation approach:
Lax-Friedrichs scheme

Joint with W. Cao and F. Huang.

Write the Gauss-Codazzi equations as a system of balance
laws:

Uy + f (U)x = H(U, x , y).

Approximate solutions Uh by the fractional Lax-Friedrichs
scheme: Riemann solutions and fractional step.

Take the metric and Gauss curvature:

g = B(y)2dx2 + dy2, κ(y) = −k(y)2,

and ln(B2k) is C1 and nondecreasing in y .
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ρ = L̃, m = −M̃,


ρt + mx = −ρ

kt

k
− 2m

kx

2k
− m2 − 1

ρ
(−BBt),

mt +
(m2 − 1

ρ

)
x = −2m

(Bt

B
+

kt

k
)
− m2 − 1

ρ

(Bx

B
+

kx

k
)
.

Riemann invariants:

w =
m + 1

ρ
, z =

m − 1
ρ

.



wh =
mh

R + 1 + [−2mh
R
(Bt

B + kt
k

)
− (mh

R)
2−1

ρh
R

(Bx
B + kx

k

)
]h

ρh
R + [−ρh

R
kt
k − 2mh

R
kx
2k − (mh

R)
2−1

ρh
R

(−BBt)]h

=
wh

R + [(wh
R + zh

R)
(Bt

B + kt
k

)
− wh

Rzh
R
(Bx

B + kx
k

)
]h

1 + [− kt
k − (wh

R + zh
R)

kx
2k − wh

Rzh
R(−BBt)]h

zh =
mh

R − 1 + [−2mh
R
(Bt

B + kt
k

)
− (mh

R)
2−1

ρh
R

(Bx
B + kx

k

)
]h

ρh
R + [−ρh

R
kt
k − 2mh

R
kx
2k − (mh

R)
2−1

ρh
R

(−BBt)]h

=
zh

R + [(wh
R + zh

R)
(Bt

B + kt
k

)
− wh

Rzh
R
(Bx

B + kx
k

)
]h

1 + [−kt
k − (wh

R + zh
R)

kx
2k − wh

Rzh
R(−BBt)]h

.



wh = wh
R + hF (wh

R, z
h
R, x , t ,h)

zh = zh
R + hF (zh

R,w
h
R, x , t ,h),

where

F (wh
R, z

h
R, x , t ,h) =

−(Bt
B − kt

2k )w
h
R − (Bt

B + kt
2k )z

h
R − BBt(wh

R)
2(zh

R)

1 − [kt
k + kx

k (wh
R + zh

R)− BBtwh
Rzh

R]h

+
−(Bx

B + kx
2k )w

h
Rzh

R + kx
2k (w

h
R)

2

1 − [kt
k + kx

k (wh
R + zh

R)− BBtwh
Rzh

R]h
.

L∞ weak solution: Uniform estimate, convergence, and
consistency.

Recent work: S. Li (weak solution for more metrics), ......
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Smooth isometric immersion
Cao-Han-Huang-W. (2023)

Let (M,g) be a smooth complete simply connected surface with a
negative Gauss curvature K and∫

M
|K |dAg < ∞,

where dAg is the area element of g. Assume that in some geodesic
polar coordinates (θ, ρ) on (M,g), K has the decomposition

ρ2+γ |K |(θ, ρ) = K (ρ)a2(θ, ρ) for ρ large,

where γ ∈ (0,1) is a constant and K and a are positive functions
such that K (ρ) is monotone for ρ large, and a,a−1, ∂ i

θ log a, ρ∂ i
θ∂ρ log a

are bound for i = 1,2,3,∫ ∞

1
max
θ

|∂ρa|dρ < ∞.

Then, (M,g) admits a smooth isometric immersion in R3.



Isometric Embedding of Md into RN , d ≥ 3

Nash (1965), Günther (1989): smooth embeddings.

Günther (1989): Any smooth d-dimensional compact
Riemannian manifold admits a smooth (i.e. C∞) isometric
embedding in RN for

N =
1
2
max{d(d + 5),d(d + 3) + 10}.

Janet dimension:
N =

1
2

d(d + 1).

Not elliptic: S.-S. Chern and H. Levy.
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Gauss-Codazzi-Ricci System

The Gauss equations:

ha
ji h

a
kl − ha

kih
a
jl = Rijkl ;

The Codazzi equations:

∂ha
lj

∂xk −
∂ha

kj

∂x l + Γm
lj ha

km − Γm
kj h

a
lm + κa

kbhb
lj − κa

lbhb
kj = 0;

The Ricci equations:

∂κa
lb

∂xk − ∂κa
kb

∂x l − gmn
(

ha
mlh

b
kn − ha

mkhb
ln

)
+ κa

kcκ
c
lb − κa

lcκ
c
kb = 0.

Rijkl : Riemann curvature tensor,
ha

ij : Coefficients of the second fundamental form,
κa

lb: Coefficients of the connection form on the normal bundle,
1 ≤ a,b ≤ N − d ; 1 ≤ i , j , k , l ,m,n ≤ d .



The Div-Curl Structure
For w = (w1,w2, · · · ,wd), curl w := (∂jwi − ∂iwj)1≤i,j≤d .

Codazzi equations: k < l ,

div(

k︷ ︸︸ ︷
0, · · · ,ha

lj ,0, · · · ,−ha
kj︸ ︷︷ ︸

l

,0, · · · ,0) + l .o.t = 0,

curl(ha
1j ,h

a
2j , · · · ,ha

dj) + l .o.t = 0,

Ricci equations:

div(

k︷ ︸︸ ︷
0, · · · ,0, κa

lb,0, · · · ,−κa
kb︸ ︷︷ ︸

l

,0, · · · ,0) + l .o.t = 0,

curl(κa
1b, κ

a
2b, · · · , κa

db) + l .o.t = 0.

Scalar products yield the quadratic terms.



Div-Curl Lemma

Let Ω ⊂ Rd ,d ≥ 2, be open bounded. Let p,q > 1 such that
1
p + 1

q = 1. Assume that, for any ε > 0, two fields
uε ∈ Lp(Ω;Rd) and vε ∈ Lq(Ω;Rd) satisfy the following:

i. uε ⇀ u weakly in Lp(Ω;Rd) as ε → 0;
ii. vε ⇀ v weakly in Lq(Ω;Rd) as ε → 0;

iii. div uε are confined in a compact subset of W−1,p
loc (Ω;R);

iv. curl vε are confined in a compact subset of
W−1,q

loc (Ω;Rd×d).
Then the scalar product of uε and vε are weakly continuous:

uε · vε −→ u · v

in the sense of distributions.



Weak Continuity: Chen-Slemrod-D.W. (PAMS)

The weak limit of a sequence of solutions to the
Gauss-Codazzi-Ricci system is still a sloution.

Let (ha,ε
ij , κa,ε

lb ) be a sequence of solutions to the
Gauss-Codazzi-Ricci system, which is uniformly bounded in Lp,
p > 2. Then the weak limit vector field (ha

ij , κ
a
lb) of the sequence

(ha,ε
ij , κa,ε

lb ) in Lp is still a solution to the Gauss-Codazzi-Ricci
system.

3-D manifold into R6: local isometric embedding,
Bryant-Griffiths-Yang (83), Chen-Clelland-Slemrod-W. -Yang (18).

More recent works: G.-Q. Chen- S. Li, Chen-Giron, .....
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