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Part 1:
Brief review on Euler equations and mixed-type problems



Gas dynamics and Euler equations

From Wikipedia:

» Gas dynamics is a science in the branch of fluid dynamics,
concerned with the study of motion of gases and its effects on
physical systems.

» Progress in gas dynamics coincides with the developments of
transonic and supersonic flights.



Gas dynamics and shock waves

Shock waves occur in many applications.



Gas dynamics and shock waves

Shock waves occur in many applications.

Schlieren photograph of an attached shock on a sharp-nosed supersonic body.



Shock wave propagating into a stationary medium, ahead of the fireball of an explosion.



Shock on a bullet in supersonic flight, published by Ernst Mach in 1887.
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Shock of supernova.



NASA Volcano Image Shows Atmospheric Shockwave.









Compressible Euler Equations

Compressible inviscid fluid flow:

Pt + V- (pU) = O, (conservation of mass)
(pU)t + AV (pu ® U) + Vp = 0, (conservation of momentum)
Et + V- ((E + p)U) =0. (conservation of energy)

1
E=pu®+pe, p=plpe).

p: density; u: velocity; p: pressure;
E: total energy; e: internal energy.

Other variables:
0: temperature; S: entropy; 7 = %: special volume.



First Law of Thermodynamics:

p

0dS = de + pdT = de — ?dp.

For a polytropic gas,

R
p:RPQa e:Cvea 7:1_{—7’

Cv

S/c -1,S/c
/‘/’ Y e/V’

p=p(p,S)=rp'e e= %p
R > 0: the universal gas constant divided by the effective
molecular weight of the particular gas;

¢, > 0: the specific heat at constant volume;

~v > 1: the adiabatic exponent; x > 0: constant under scaling.

For smooth solutions, the entropy S(p, E) is conserved along
fluid particle trajectories:

9 (pS) + V - (mS) = 0.



Isentropic flow:
pt+ V- (pu) =0,
(pu)i+ V- (pu@u) + Vp = 0.

.
p:,i’ v > 1.
Y



Elastodynamic equations:

pt + div(pu) =0,
(pu); + div (pu @ u) + VP(p) = div(p FFT),
Fi+u-VF =VuF.

Magnetohydrodynamic equations:

pt + div(pu) = 0,
(pu); +div(pu @ u) + Vp = (V x H) x H,
H;— V x (uxH) =0, d1VH:O.



The general conservation laws:
du+V-fuy=0, ueR" xeRY (1)

where f = (f1,--- ,fy) : R” — (R")? is a nonlinear mapping with
ff:R"—>R"i=1,.--,d.

The hyperbolicity of system (1) requires that, for any
w € 8971, the matrix (Vf(u) - w)nxn have nreal eigenvalues
Ai(u,w), i=1,2,--- , n, and be diagonalizable.



For the one-dimensional isentropic Euler equations of gas
dynamics
{ afp + aXm = 07
m? _
Otm + Ox <7 —|-,D) =0,

for x e Rand t > 0, m = pu, with the ~-law for pressure:
p(p) =p"/v, v>1. (2)

For the case 1 < v < 3, which is of physical significance, the
eigenvalues are

AM=U—C, Xl=U+C,
where ¢ = p’, with § = 251 € (0,1], is the sound speed.

Strictly hyperbolic if p > 0.



A function n : ® — R is called an entropy of system (1) if there
exists a vector function q: ® — R, q = (qy,...,qq), satisfying

Vqi(u) = Vn(u)Vi;i(u), i=1,...,d.

An entropy n(u) is called a convex entropy in © if
V2pu) >0 foranyue®

and a strictly convex entropy in ® if V25(u) > ¢l.



The entropy condition:
om(u) + Vx-q(u) <0

in the sense of distributions for any C? convex entropy-entropy
flux pair (n,q).

The relative entropy and entropy flux pair:

a(u,v) = n(u) —n(v) — Vi(v)(u —v),
Bu,v) = q(u) — q(v) — Va(v)(f(u) — f(v))

satisfies

ora(u,v) + Vy - B(u, V)
< —{0(Vn(v))(u = V) + Vx(Vn(v))(f(u) — f(v))}.



The system (1) is called symmetrizable, if there is a positive
definite symmetric matrix Ap(u), such that A;(u) = Ag(u)Vf;(u)
is symmetric. The matrix Ap(u) is called the symmetrizing
matrix. Denote A(u) = (A¢(u),--- , Ag(u)) , then

Ao(u)oiu + A(u)Vu = 0.

Theorem

A system in (1) endowed with a strictly convex entropy n in a
state domain ® must be symmetrizable and hence hyperbolic
in®.



For the isentropic Euler equations, the mechanical energy and
energy flux

_1|mp? p
A R G D

q_m<1!m!2+ rﬂ)
e \2 p -1

is a strictly convex entropy-entropy flux pair when p > 0.

with m = pu,

The Euler system is a symmetrizable hyperbolic system.



Local Existence of Smooth Solution
pt+ V- (pu) =0,
(pu)t + V- (pu®u)+ Vp =0,
Cauchy problem for U = (p, u):

Ul—o = Up(x), x€R®

Theorem (Local existence)

For
Up e HSNL®(R®), s>5/2, po(x)>0,

3 afinite time T € (0, c0), s.t. the Cauchy problem has a
unique smooth solution U € C' N L>=(R3 x [0, T]), p(x,t) > 0,
and U € C([0, T]; HS) n C'([0, T]; H5— ).

e Friedrichs, Lax, Li-Yu; Kato, Majda, Makino-Ukai-Kawashima, Q. Wang, ....



Formation of Singularities

Cauchy problem with smooth initial data:

(p,W)[t=0 = (po,Uo0)(X), po > 0;  (po, Uo)(x) = (p,0), for [x| = R.

Finite propagation speed: o = \/m (sound speed),
(p,u)(x,t) =(p,0), if |x|>R+ot

= [as (P(x,1)!/7 =) dx, B = p(p).
= Jps X - pu(x, t)ax.

Theorem (Sideris, 1985)

If (p,u)(x,t) is a C' solution for0 < t < T, and
P(0) > 0, F(0) > aocR* maxx po(X), « = 167/3,
then the lifespan T of the C' solution is finite .



» Formation of Singularities:
Lax, John, Liu; Klainerman-Majda, Sideris, Rammaha, Hu-W.,
Christodoulou-Miao, Luk-Speck, An-Chen-Yin,
Buckmaster-Shkoller-Vicol, ....

» Formation of shocks for 2D isentropic compressible Euler
(Buckmaster-Shkoller-Vicol, 2022)

(Rough statement) FOr @an open set of smooth initial data with O(1)
amplitude and with minimum initial slope given at initial time f; to
equal —1/e, for e > 0 taken sufficiently small, there exist smooth
solutions of the Euler equations with O(1) vorticity, which form
an asymptotically self-similar shock in finite time T,, such that

T. —th=O(1).



Isentropic Euler Equations: weak solutions

pt+ V- (pu) =0,
(pu); +V - (pu@u) +Vp =0,
1-D Problem:
» Small BV solution: Glimm scheme, wave-front tracking,
vanishing viscosity;
Glimm, Glimm-Lax, Liu, Dafermos, Bressen, Liu-Yang, Bianchini-Bressan, Vasseur, and many others ......
> Large L™ solution: vanishing viscosity, finite difference,
kinetic formulation, via compensated compactness
methods.

DiPerna, Ding-Chen-Luo, Chen, Lions-Perthame-Souganidis-Tadmor, Chen-LeFloch, Huang-Wang (v = 1),
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pt+ V- (pu) =0,
(pu)t+ V- (puxu)+Vp=0,
1-D Problem:

» Small BV solution: Glimm scheme, wave-front tracking,
vanishing viscosity;
Glimm, Glimm-Lax, Liu, Dafermos, Bressen, Liu-Yang, Bianchini-Bressan, Vasseur, and many others ......
> Large L™ solution: vanishing viscosity, finite difference,
kinetic formulation, via compensated compactness
methods.
DiPerna, Ding-Chen-Luo, Chen, Lions-Perthame-Souganidis-Tadmor, Chen-LeFloch, Huang-Wang (v = 1),

Other studies: surveyed in Dafermos’ book.

Hsiao-Zhang, Slemrod, Smoller, Nishida, Chen-LeFloch, Pan, Huang, Serre, Luo, Jessen, Liu-Yang, Goodman-Xin,
Temple-Young, Li, Greenberg-Rascle, Chen-Wang, Tzavaras, Jin-Xin, Wang, Keyfitz, Chen-Frid, Shearer, Lewicka,
Christoforou, Trivisa, Holden-Risebro, Zumbrunn, Dafermos-Pan, Huang-Pan, LeFloch-Westdickenberg,
Gangbo-Westdickenberg, De Lellis-Szekelyhidi, ......



M-D Problem

Very difficult: 1-D methods do not work.

Lots of progress recently:

Morawetz, Gamba-Morawetz, Canic-Keyfitz-Lieberman-Kim-Jedgic, Chen-Feldman, Zheng, Li-Zheng,
Serre, Xin-Yin, Hunter, Zhang, S.-X. Chen, Liu-Elling, Chen-Dafermos-Slemrod-Wang, Xin-Xie,
Chen-Slemrod-Wang, Chen-Wang-Yang, LeFloch-Westdickenberg, Luo-Smoller,
Gangbo-Westdickenberg, Bae-Chen-Feldman, ......

Convex integration: De Lellis-Szekelyhidi, Chen-Vasseur-Y, ......



Complex Structures of 2-D Riemann Solutions

Lax-Liu, Kurganov-Tadmor




Complex Structures of 2-D Riemann Solutions

Lax-Liu, Kurganov-Tadmor

Recent work: Chen-Cliffe-Huang-Liu-Wang, 2023.



M-D compressible flows: mixed-type, free boundary

Riemann problems,
self-similar solutions,
shock reflections,
transonic flows,

vortex sheets and interfaces,



The general linear second-order equation with two independent
variables for u(x, y) :

AUy + 2buyy + cUyy + duy + euy + fu = g,
where a, b, ¢, d, e, f, g are given functions of (x, y).
The characteristic equation:
a)? —2b\+c=0.

The eigenvalues:

N b+vb?—ac
—

The equation is hyperbolic if the characteristic equation has two real distinct
eigenvalues (b*> — ac > 0), is elliptic if it has no real eigenvalues
(b? — ac < 0), and is parabolic if it has one real eigenvalues (b? — ac = 0).

Or, it is called elliptic if all eigenvalues of the matrix
b
A=i ]

have the same sign, parabolic if A is singular, and hyperbolic if the two
eigenvalues of A have the opposite signs.



Basic equations of three types
Laplace equation: elliptic
Au=0.
Heat equation: parabolic
ur— Au=0.
Wave equation: hyperbolic

Un—AUZO.



Equations of mixed types: with fixed boundary

The Tricomi equation
Uxx — XUyy = 0.
The Keldysh equation: (iso called the inquini-Cibrario's equation sometimes)
Uxx — yUyy = 0.
Lavrentyev-Bitsadze equation:

Uxx + sin(x)uy, = 0.



Equations of mixed types: with free boundary

e The equation:
UXX - UUyy - 0,

is hyperbolic if u > 0, elliptic if u < 0, and parabolic if u = 0. So
it is of mixed type, and the boundary u = 0 separating the
hyperbolic and elliptic parts is a free boundary.



e The equation for a two-dimensional steady potential flow is:
(€2 — UP)pax — 2Uvipyy + (€2 — V3, = 0,

where (u, v) = Vo = (¢x, ¢y), ¢ is the velocity potential, and c is the
sound speed given by the Bernoulli’'s law:

N -
2
with v > 1 constant. The characteristic equation is

(c® — UP)N? +2uvA + (c® — v3) = 0,

2=1- 1(u2+v2),

with eigenvalues

) —uvEcevUuR +v2 —c?
- 02—U2 :

Thus the equation is hyperbolic if u? + v? > ¢2 (i.e., supersonic),
elliptic if u? + v2 < ¢ (i.e., subsonic), and parabolic if u? + v? = ¢?
(i.e., sonic). It is of mixed type, and the sonic curve u® + v = c?is a
free boundary.

Chen-Feldman 2018 (Research Monograph): The Mathematics of Shock
Reflection-Diffraction and von Neumann’s Conjectures, 832 pages, Annals of
Mathematics Studies, 197, Princeton University Press, 2018.



Mathematical Challenges of Mixed-Type PDEs

» The transition boundary between the elliptic and hyperbolic
phases is a priori unknown, thus most of the classical
approaches do not work.

» New approaches are needed to deal with the free
boundary problems, including optimal estimates of
solutions to nonlinear degenerate PDEs, corner
singularities, ......






Part 2:
Transonic flows past obstacles and in nozzles



Transonic flows in gas dynamics

Transonic flows occur in gas dynamics, astronomy,
astrophysics, and so on.

» Transonic flow is where air flows above, at, and below the
speed of sound at the same time at different points on an
object.

» Supersonic flow, sonic flow, subsonic flow.

» Singularities: shock wave, rarefaction wave, contact
discontinuity, ...



flow speed
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(a) Regular reflection (b) Mach reflection

Lau-Chapdelaine, S.SM., Radulescu, M.I. Non-uniqueness of solutions in asymptotically self-similar shock

reflections. Shock Waves 23, 595-602 (2013).
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G.-Q. Chen, Morawetz's contributions to the mathematical theory of transonic flows, shock waves, and partial
differential equations of mixed type. Bull. Amer. Math. Soc. (N.S.)61(2024), no.1, 161-171.
G.-Q. Chen, M. Feldman, The mathematics of shock reflection-diffraction and von Neumann’s conjectures. Annals
of Mathematics Studies, vol. 197, Princeton University Press, Princeton, NJ, 2018.
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https://psaap.stanford.edu/heat_release_modeling/temperature_imaging.html


https://psaap.stanford.edu/heat_release_modeling/temperature_imaging.html

Transonic flow past an airfoil
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2-D Euler Equations for Steady Irrotational Flows

—uy =0,
( u)x + (pv)y =0,
(pU? + p)x + (puv)y =0
(puv)x + (pv® + p)y =0,

p=pp)=p"/y,v=1.

Bernoulli’s law:
1
— 1 ~y— ~=1 2
p=<1—72 qz) or Fogh=——(P-c),

where 2 = 12 +v2, 2 =p(p)=1-25¢,

_ 2 _
Qer =\/557) 9= Qeav = /557



2-D Euler Equations for Steady Irrotational Flows

—uy =0,
( u)x + (pv)y =0,
(pU? + p)x + (puv)y =0
(puv)x + (pv® + p)y =0,

p=p(p)=p"/y, v>1.

Bernoulli’s law:

;
- y—1 5\ > o _ 2 2 2
p—<1_ 2 CI) , or g Qcr = 1<Cl 0)7

v+
where 2 = 12 +v2, 2 =p(p)=1-25¢,
Qer = 7%7 9 =< Qecav = 7%1

The flow is subsonic if g < qcr, sonic if ¢ = ger,
and supersonic if g > ger-



Subsonic Flow

Existence of subsonic solutions: zes, snifman sos)

For a given Wy, = (Us, Vo), there exists q < qer , S.t.
the problem has a unique subsonic solution (u, v) for

Qoo = |Woo| < @ . The maximum speed qm — Qcr as
J — .

Bers, Shiffman, Serrin, Finn, Gilbarg, Dong, J. Chen, C. Wang-Xie-Xin, ...



Subsonic-Sonic Flow

gm — Qer @S G " §: Sonic points appear.



Subsonic-Sonic Flow

gm — Qer @S G " §: Sonic points appear.

Existence of sonic-subsonic solutions:
Chen-Dafermos-Slemrod-D.W. (CMP)

Let g5, < g be a sequence of speeds at oo, and let (u°, v¢) be
the corresponding subsonic solutions, then, as g5, @, the
sequence (u°, v°) possesses a subsequence that converges
strongly to a weak solution (u, v) with g = |(u, v)| < Qer-



Subsonic-Sonic Flow

gm — Qer @S G " §: Sonic points appear.

Existence of sonic-subsonic solutions:
Chen-Dafermos-Slemrod-D.W. (CMP)

Let g5, < g be a sequence of speeds at oo, and let (u°, v¢) be
the corresponding subsonic solutions, then, as g5, @, the
sequence (u°, v°) possesses a subsequence that converges
strongly to a weak solution (u, v) with g = |(u, v)| < Qer-

Approach: compensated compactness, momentum equations.



Compensated Compactness

Recall: for a sequence uk : Q2 — R™ bounded in L*°(Q2), there
exists a subsequence (still denoted) u, and a function
u € L°(Q) such that ux = uin L*(Q), i.e.,

/ uxgdx — / ugdx, ask — oo,
Q Q

for each g € L'(Q).

For a continuous function f € C(R™), f(uk) is bounded in

L>(Q; R™) and thus f(uk) = f. The question is:
f = f(u)?

The answer is no, in general.



A counterexample:

Take ux = sin kx, ¢ € C}(R) a test function with compact
support. Then

/]RSin kx ¢(x)dx = ;{/Rcos kx ¢'(x)dx — 0, as kK — oo
since [ cos kx ¢/(x)dx is bounded; but, for
U2 = sin® kx = %(1 — cos 2kx),
/Rsm kxo(x) /qﬁ dX——/cosZkX¢( x)dx — = /(;5
Thus,

Uk =sinkx = u=0, uﬁ:sinzkxﬁé#uzzo



Lemma (Tartar) Suppose that v¢ : R2 =R x [0,00) — R™is a
sequence of uniformly bounded measurable functions, i.e.,

vi(x,t) e K, a.e.

for a bounded set K € R™, and that, for two function pairs
(77/7 ql)’ I - 1721
ni(v¥)e + qi(v¥)x is compactin  H,,].

Then there exists a subsequence (still labeled v¢) and Young
measures

vxt 1 R2 — Prob(R™), suppuy: C K,

such that



(1). For any continuous function f, the weak limit has the
following Young measure representation,

w*-lim f(v®) = (vx t(N), f(A)) = f(N)dvx t(A),
]Rm
and the Young measure vy ; commutes with the 2 x 2
determinant mapping acting on the function pairs, that is, the
following commutativity relation holds,

(Vx,t, M Q2 — m2GQ1) = (Vx,t, M) (Vx,t, G2) — (Vx.t:M2) (.t Q1 )-

(2). ve(x,t) — v(x,t) strongly if and only if vy ; is a Dirac
mass, i.e.,
Uxt = 5U(X,Z‘)a a.e. in Ri.



Compensated Compactness for Subsonic-Sonic Flow
we(x,y) = (U5, vo)(x, y), (x,y) € Q C R?:

(1) a°(x,y) = [w(x,¥)| < qer a.e.in Y
(2) Oxni(W®) + dyqr(we), k = 1,2, are compact in H, ! (Q),

where (11, q1) = (pU® +p, puv), (n2,q2) = (puv, pv®+ p).



Compensated Compactness for Subsonic-Sonic Flow
we(x,y) = (U5, vo)(x, y), (x,y) € Q C R?:

(1) @°(x,¥) = [w*(x,¥)| < qer a.€. N Q;
(2) Oxmi(W?) + Oy qu(w?), k = 1,2, are compact in Hy, (),

where (11, q1) = (pU® +p, puv), (n2,q2) = (puv, pv®+ p).

Then, the div-curl lemma (Tartar-Murat) implies the
commutation identity:

{v(w), ni(w)gj(w) — qi(w)n;(w))
= W(w), ni(w)){w(w), gi(w)) — {v(w), qi(w)) (v (w),n;(w)),

where v = vy ,(w) is the associated Young measure
(probability measure) for the sequence we(x, y).



Compensated Compactness for Subsonic-Sonic Flow
we(x,y) = (U5, vo)(x, y), (x,y) € Q C R?:

(1) @°(x,¥) = [w*(x,¥)| < qer a.€. N Q;
(2) Oxmi(W?) + Oy qu(w?), k = 1,2, are compact in Hy, (),

where (11, q1) = (pU® +p, puv), (n2,q2) = (puv, pv®+ p).

Then, the div-curl lemma (Tartar-Murat) implies the
commutation identity:

{v(w), ni(w)gj(w) — qi(w)n;(w))
= ((w), ni(w)) (v(w), g(w)) — (v(w), qi(w)) (v(w), nj(w)),

where v = vy ,(w) is the associated Young measure
(probability measure) for the sequence we(x, y).

Claim: v is a Dirac measure.



Proof of Convergence

(v(wr) @ v(we), I(wy, w2)) =0,

where
I(wy, wo)
= (m(w1) —m(w2))(qa(ws) — g2(n2))
— (q1(wy) — q1(W2))(m2(wy) — m2(W2))
> =2
= —p1p2(Us Ve — Upvy)? — H(m - ,02)2350:%2
<0

I

where g < q.r is between gy and g..



Proof of Convergence

(v(wr) @ v(we), I(wy, w2)) =0,

where
I(wy, wo)
= (m(w1) —m(w2))(qa(ws) — g2(n2))
— (q1(wy) — q1(W2))(m2(wy) — m2(W2))
> =2
= —p1p2(Us Ve — Upvy)? — m(m - ,02)2350:%2
<0

I

where g < g is between gy and go.

e Extension to higher-dimensions, full Euler equations, or other related
problems:

F-M. Huang-T. Wang-Y. Wang, C. Wang-Xie-Xin, ....



Transonic Flow

g~ > Q: transonic flow.



Transonic Flow

g~ > Q: transonic flow.

L. BerS, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, 1958, pp. 3, & 135:
These (transonic flow) problems, while admittedly difficult, are exceed-
ingly challenging and give is a glimpse of the long lost golden age of the
unity of science. Indeed, physicists interested in them demand rigorous
mathematical proofs, ...

It is hardly necessary to point out how interesting it would be to obtain
general existence theorems and effective methods of computation for the
type of flow considered here in the case where the profile is an arbitrarily
given curve. This problem is probably rather different.

Courant- FriedriChS, Supersonic Flow and Shock Waves, 1962, pp 367:
. even then a rigorous proof seems beyond the present possibilities of
analysis, ...



Morawetz’s work

Morawetz: 1985, 1995, 2004

If the viscous approximation problem

VX - Uy — R17
(pu)x + (pv)y = Ra,

with Bernoulli’'s law: p = p(q) = <1 - §q2> e

(where Ry and R» are the artificial viscosity terms to be
determined,) yields approximate solutions satisfying the
compensated compactness framework, then the viscous
solutions converge to a solution of the transonic flow problem.

?? Viscous problem ??



An Effective Viscous Problem
Chen-Slemrod-D.W. (ARMA)

Polar coordinates in the phase plane:
u= qcosb, vV = Qgsiné.
The viscous problem:
Vx — Uy = Ry = A0,
{ (pU)x + (pv)y = Re = eV - (02(p)Vp) ,

where o5 is positive, smooth, bounded, satisfying

2

02:1—0— for g >

2 c>c(g> \@qcr)a

2
V33—

p
1<y<8 F=pl)=1-1—¢



Boundary Conditions

29, 29,
Q
@ o,
o0,
(a) (b)

Vo-n=0 on 024,
eaaVp-n=—[p(u,v)-n| on 09y,
(U, V) = (Usoy Vo) =0 on 99> with 9o < Geav,



Riemann Invariants

—sinf —CICOS@] {q] N cosd —qsin@] {q} {_Fﬁ]
2__ A2 . 2_q2 . = i .
CCZ‘;’ cos —sinf | 0], |zl sind  cosf 0 y Ao

2q Pq

Eigenvalues and Ieft eigenvectors
A+ = —sinf £ Y——— cos@ pt+ = cosf + Y—— S|n9 (:1:7”72702 1).

a

The Riemann invariants W_.:

oWy oWy g? — c?
= = f >
00 1, oq - qc org=¢

satisfy

OWe | OWe  OWe 1 OW.

oy~ ag "togan



Invariant Regions

1<~<38




I~ <
Wy =6,







Compensated Compactness and Convergence

wo(x,y) = (U5, vo)(x, y), (x,y) € Q C R*:
(1) g°(x,y) =|w=(x,y)| < q. a.e.in £, for some positive constant
G« < Qecav < 0Q;

(2) 0xQy+(wW?) + 8y Qi (W) are compact in H,] (Q), for the
entropy-entropy flux pairs (Q;, Qv),



Compensated Compactness and Convergence
we(x,y) = (U5, ve)(x,y), (x,y) €Q C R?:

(1) g°(x,y) =|w=(x,y)| < q. a.e.in £, for some positive constant
G« < Qecav < 0Q;

(2) 0xQy+(wW?) + 8y Qi (W) are compact in H,] (Q), for the
entropy-entropy flux pairs (Q;, Qv),

(W), Qr (W) Qo (W) — Qi (W) Qo (W))

= <V(W)’ Q1+(W)><V(W)7 Qg,(W)> - <V(W)7 Q1,(W)><V(W), QZ+(W)>7

where v = vy (W), w = (u, v), is the Young measures for
we (X, y),



Compensated Compactness and Convergence

we(x,y) = (U, vE)(x, ¥), (x,¥) € Q C R%:

(1) g°(x,y) =|w=(x,y)| < q. a.e.in £, for some positive constant
G« < Qecav < 0Q;

(2) 0xQy+(wW?) + 8y Qi (W) are compact in H,] (Q), for the
entropy-entropy flux pairs (Q;, Qv),

(W), Qr (W) Qo (W) — Qi (W) Qo (W))

= <V(W)’ Q1+(W)><V(W)v Qg,(W» - <V(W)7 Q1,(W)><V(W), QZ+(W)>7

where v = vy (W), w = (u, v), is the Young measures for

we (X, y),
<V(W) ® I/(W’), /(Wv W/)> =0,

I(w, W) =(Qi (W) — Qi (W))(Qa— (W) — Qo_(W'))
—(Qay (W) = Qo (W))(Qy—(w) — (")),

v is a Dirac measure.



The Entropy-Entropy Flux Pairs (Qy, Qz)

2
Qui+ oy = —VoRy + 57— T2V

C2 q2
&+ (z82u) -0
rq 2-q*"),

Generators H: (1/(p) = ¢2/9?)

with

q2

1
pHuo — Hp = =V, Hu"’;HO@: fqzv”’
satisfying the generalized Tricomi equation:
1
Hu + = P 5(1 = M?)Hpy =0, M=q/c,
The Loewner-Morawetz relation:

Qi = pqH,, cos§ — qHysin 0, Qo = pqH,, sin 6 + gHy cos 6.



Existence of Transonic Solution:

Let Voo =0, |Uso| < Geav, @and 1 <y < 3. Assume g°(x,y) > a(d) >0
forany (x,y) € Qs = {(x,y) € Q : dist((x, y), Q4 > 6 > 0} for some
a(d) > 0asd — 0,and ||6°|~ < C. Then,

(1) The support of the Young measure vy, strictly excludes the
stagnation point ¢ = 0 and the Young measure is a Dirac mass;

(2) The sequence (u®, v¢) has a subsequence converging strongly

in L2 .(Q) to an entropy solution.

(iii) The boundary condition (u, v) - n > 0 on 9 is satisfied in the
sense of normal trace.



Existence of Transonic Solution:

Let Voo =0, |Uso| < Geav, @and 1 <y < 3. Assume g°(x,y) > a(d) >0
forany (x,y) € Qs = {(x,y) € Q : dist((x, y), Q4 > 6 > 0} for some
a(d) > 0asd — 0,and ||6°|~ < C. Then,

(1) The support of the Young measure vy, strictly excludes the
stagnation point ¢ = 0 and the Young measure is a Dirac mass;

(2) The sequence (u®, v¢) has a subsequence converging strongly
in L2 .(Q) to an entropy solution.

(iii) The boundary condition (u, v) - n > 0 on 9 is satisfied in the
sense of normal trace.

Recent work: v = 3 by G.-Q. Chen-T. Giron-S. Schulz.



Transonic flows in nozzles

Earlier works for flows in nozzles:

— Compressible flows in nozzles:
Courant-Friedrichs, Chen-Deng-Xiang, Cheng-Du-Xiang, Du-Xie-Xin, Wang-Xin, Xie-Xin, Chen-Huang-Wang-Xiang,

— Transonic shocks in nozzles:

S.-X. Chen, Chen-Feldman, Chen-Chen-Feldman, Chen-Yuan, Fang,-Xin, Li,-Xin-Yi, ...........

— Contact discontinuity:

Bae-Park, Huang-Kuang-W.- Xiang, ......



Consider the stability of steady transonic contact discontinuity
for the compressible flows in a two-dimensional (2D) finitely
long nozzle:

Ix(pu) + 0y(pv) = 0,

dx(pu? + p) + 9y (puv) = 0,
dx(puv) + 8y (pv? + p) =0,
Ix((pE + p)u) + 9y ((pE + p)v) =

1 K S S

E= E(u +Vv )+e(p7p)7 p:A(S)p’Y7 e=




Consider the stability of steady transonic contact discontinuity
for the compressible flows in a two-dimensional (2D) finitely
long nozzle:

dx(pu) + By (pv) = 0,

Ox(pu? + p) + By (puv) =0,

dx(puv) + 8y (pv? + p) =0,

Ox((pE + p)u) + 0y ((PE + p)v) =0,

1
E= E(u2+v2)+e(p,p)7 p=AS)", e= —

The Bernoulli function B = 3(u? + v?) + 245, and the entropy
S satisfy

Set V = (p, B, S).



The domain in the nozzle:

Q:={(x,y)eR?:0<x<L, g (x)<y<g+(x)},

) —
e(Y)
D\_? Q(e) —y
B --- JUPEERN T .
02 R !
T L)
—
/\ r_

The location of the contact discontinuity:

Fea = {¥ = 0gu(X), 0 < x < L}.



Background solution

Transonic flow in a flat nozzle with contact discontinuity:

M(e)
N He —

Uh) Frmmmmmmmmmo oo y=0

x=0 x=1L
The solution in the subsonic region:
U® = (u©), O,Q(e),g(e))T-
The solution in the supersonic region:

UM = (u™,0,pM, p0) 7



The initial incoming flow Up(y) at x = 0:

V), yerd,
W) =1 o (h)
U'(y),  yely.
On the nozzle walls T'_ and I:
(u vy .n_=0onT_, (u® v®).n =00nT,.

Along the contact discontinuity y = geq(x), the following
Rankine-Hugoniot conditions hold:

(uv)-na=0. []=[pl=0, on Fu.

In Q(©), the flow slope at the exit ris given by

WL, y) = we(y),
with v
we(Gea(L)) = (L, Gea(L))-



Stability of contact discontinuity:

— Subsonic-subsonic: sae-park (13, 19)

— Supersonic-sSUPersoNiC: Huang-kuang-W.- Xiang (19)



Problem

Huang-Kuang-W.- Xiang

For a given transonic incoming flow Uy(y) at the entrance and a
given flow slope w.(y) at the exit ng), find a unique piecewise
smooth transonic solution (U(x, y), gea(x)) that is separated by
the contact discontinuity I'.q4 satisfying the Euler system in the
weak sense and the boundary conditions. The solution is a
small perturbation of the background solution (U, 0).



Theorem (Main Theorem, Huang-Kuang-W.- Xiang, Ann. PDE )

There exist constants ag € (0,1) and o > 0 depending only on U and L,
such that for any given a € (0, ) and e € (0, €), if

Hvée) H1 s o + HU(h U(h H1 s ® + H"‘)eH - a {P )
+ “g_ + 1 HZ,a;r, + Hg+ -1 Hz,a;u =6
and M® ( ) > \/1+ ;L2, there exists a unique solution

(U(XJ),ch) € Hi(Q) x C**([0, L)) such that

(i) The solution U consists of the supersonic flow U™ e C'*(Q™) and
subsonic flow U® e CS’_“Q Q) separated by y = g.i(x), and the
following estimate holds:

z o

08 = OO+ U~ u

aQ < Co€

H1 ;)

(ii) The contact discontinuity y = g.a(X) is a stream line with g.«(0) = 0 and
satisfies | geal|, ., r < Coe, where Co > 0 is a constant depending only
onU andL.

cdu{o}



Main approaches and difficulties

— Straighten the free boundary of contact discontinuity by the
Euler-Lagrangian coordinate transformation, but get a new free
boundary on the upper wall.

— Solve the nonlinear second-order elliptic equation in the
subsonic region for the stream function.

— Solve the hyperbolic system in the supersonic region.

— Develop an iteration scheme, and show convergence by
contraction.



Main approaches and difficulties

— Straighten the free boundary of contact discontinuity by the
Euler-Lagrangian coordinate transformation, but get a new free
boundary on the upper wall.

— Solve the nonlinear second-order elliptic equation in the
subsonic region for the stream function.

— Solve the hyperbolic system in the supersonic region.
— Develop an iteration scheme, and show convergence by

contraction.

Many open problems!






Part 3:
Transonic flows in isometric embeddings



Isometric Embedding

Isometric embedding in differential geometry, with applications in:
& shell theory,
4 computer sciences,
& protein folding (Mathematical Challenge Ten of DARPA),

Janet, Cartan, Nash, Kuiper, Gromov, Gtinther, Yau, Nakamura, Nirenberg, Lin, Hong, Han, Pogorelov, Y. Li,
Guan-Li, Efimov, Bryant-Giriffiths-Yang, Nakamura-Maeda, Han-Khuri, Lewicka-Pakzad, Christoforou, Poole,

Cao-Szekelyhidi, ......






Isometric Embedding of M into RV
Nash (1965), Gunther (1989): smooth embeddings.
Gulnther (1989):  Any smooth d-dimensional compact

Riemannian manifold admits a smooth (i.e. C*°) isometric
embedding in RN for

N = % max{d(d +5),d(d + 3) + 10}.

Janet dimension: ;



Isometric Embedding of M into RV
Nash (1965), Gunther (1989): smooth embeddings.

Gulnther (1989):  Any smooth d-dimensional compact
Riemannian manifold admits a smooth (i.e. C*°) isometric
embedding in RN for

N = % max{d(d +5),d(d + 3) + 10}.

Janet dimension: ;

Example — isometric embedding of surfaces: d=2, N =3.



Isometric Embedding of Surfaces in R3
g,‘j, ij=1,2: the given Metric of a2-p Riemannian manifold A defined on @ C R2.
The first fundamental form:

I := g11(dx)? + 2g120xdy + goo(dy)?.



Isometric Embedding of Surfaces in R3
gjj, ii=1.2:  the given metric of a2 Riemannian manitold A defined on @ C B2,
The first fundamental form:
I:= g11(dx)? + 2g12dxdy + goo(dy)?.
The isometric embedding problem is to seek a map
r:Q—R3

such that
ar-dr =1

that is,
Oxr - OxF = g11, Oxr-OyF = gro, Oyr-Oyr = Qgoo,

so that {Oxr, Oyr} in RS are linearly independent.
y



The fundamental theorem of surface theory

The second fundamental form:

Il := hy1(dx)? + 2hy2dxdy + hop(dy)?.

There exists a surface in R with the fundamental forms / and /I
if (g5) and (hj) (with (gj;) > 0) satisfy the Gauss-Codazzi
system.

This theorem holds even when (h;) € L> for given
(gj) € C"1, for which the immersion surface is C1.  wardare (2005



Gauss-Codazzi Equations

oM — oy L=TEL —2r@m+ BN,
OxN — oM = —T DL+ 2r§2)M = rﬁ‘RN,

LN — M2 = K, (Monge-Ampere constraint)
where
hy hyz hoo P
L= , M= , N= . lg| = det(gj) = 911922 — 9r2,
varl var var
R
H(Xv .y) = |1g2|127 ']k/ g/m (8krl(]m) - a/r(m + r(n r m) - rl:)rnj ) ’

1
i = égkl (ajg,, + 8,-gﬂ — 8,g,,-) . (Christoffel symbol)



Mixed Type
Consider (M, N) as the state variables. If N = 0, the

eigenvalues are
 -MEy-k

A+ N

The Gauss-Codazzi system is

hyperbolic if k < 0,
elliptic if & > 0,

parabolic if xk = 0.

The Gauss curvature x may change sign, thus the system is of
mixed hyperbolic-elliptic type.



Mixed Type
Consider (M, N) as the state variables. If N = 0, the

eigenvalues are
 -MEy-k

A+ N

The Gauss-Codazzi system is

hyperbolic if k < 0,
elliptic if & > 0,

parabolic if xk = 0.

The Gauss curvature x may change sign, thus the system is of
mixed hyperbolic-elliptic type.

® | ocal isometric embedding of 2d and 3d manifolds with Gauss curvature changing sign cleanly:

C.-S. Lin, Q. Han, T. Poole......



A Fluid Dynamic Formulation:

L=pv®+p, M=—puv, N=puP+p,
{ax(puv) +0y(pv2 +p) = —(pv2 + p)rs) 2puvr< )

— (pu? +p)r'?,
:
Ix(pU? + p) + 9y (puv) = —(pv2 + p)F( ) 2,ouvr12 ﬂ

(pu? + p)r3y,
pPG + PP =k, Q=0+ VA
Chaplygin-type gas: p = —%. The “Bernoulli” relation:
1 1
= ) =—V@+r F=¢+nr E=pp)=—
p N p q q p'(p)




A Fluid Dynamic Formulation:

L:pV2—|—p7 M:—/)UV, N:[)U2+p,
{8X(puv) +0y(pv2 +p) = —(pv2 + p)rs) 2puvr< )

— (pu? +p)r'?,
Ix(pU? + p) + 9y (puv) = —(pv2 + p)Fm 2puvr12 ﬂ

(pu® + p)I3Y
pPG + PP =k, Q=0+ VA
Chaplygin-type gas: p = —%. The “Bernoulli” relation:
1 1
= R — 2+K/; 02:q2+ﬁ7 C2_plp_7
V=g P Ve (»)

Mixed type: & > 0, subsonic, elliptic; x < 0, supersonic,
hyperbolic; x = 0, sonic, degenerate. J




A Fluid Dynamic Formulation:
L:pV2—|—p7 M:—/)UV, N:pU2+p,

Bx(puv) + By (V2 + p) = —(pv? + P)T %) 2puvr< )~ (o + p)riy
Du(pU? + p) + Oy (puv) = —(pv2 + Iy — 2puvTy — (pu? + p)ry)

9

2)
1>
1)
1

pPG + PP =k, Q=0+ VA
Chaplygin-type gas: p = —%. The “Bernoulli” relation:

1 1
= p=—V@+r =09 +x, c2:p’(p):?~

Mixed type: & > 0, subsonic, elliptic; x < 0, supersonic,
hyperbolic; x = 0, sonic, degenerate.

L°° solution = C'! immersion.



Isometric embeddings with negative Gauss curvatures

» Isometric embeddings with positive Gauss curvatures:
elliptic problem, many works.

» Isometric embeddings with negative Gauss curvatures:
hyperbilic problem, only a few results.

Quote from S.-T. Yau, Review of geometry and analysis. Asian J. Math.
4 (2000), 235-278.

“The isometric problem for surfaces of negative curvature
is a very interesting nonlinear hyperbolic problem. As such,
it is very difficult to prove global existence theorems for
such surfaces."



L>° weak solutions — C'! isometric immersions

1. Fluid dynamics approach
(joint with G.-Q. Chen and M. Slemrod, CMP),

2. Vanishing artificial viscosity approach

(joint with W. Cao and F.-M. Huang, ARMA),

3. Finite difference approximation approach
(joint with W. Cao and F.-M. Huang, SIMA).



Fluid dynamics approach
Chen-Slemrod-W.

k<0 K=-2 ~>0.

Rescale (L, M, N):
=Lt m=
gl

A viscous approximation:
{ dx(puv) + dy(pv? + p) = Ry + =95 (pv),

)

Mo RN SIR—ie =
0 8

dx(pU? + p) + dy(puv) = Ra + £05(pu),

where
=(2 =(2 =2
Ry := —(pv® + p)I'® — 2puvf® — (pu? + p)F?,
Ry := —(pV? + p)FL) — 2puvfY) — (pu? + p)FY,
~(1 1 Yx =(1 1 Yy ~(1 1
Fy =1y + Pk Fy =1+ 2+ e =5,
B _ @ RO _r@, % RO _r@ W
11 11 12 12 +2,_Y7 22 22 + ~



Invariant Region

2
= 2
Catenoid: g1 = gop = (cosh(cx)) BZ—1, gio = 0, k(x) = —roE(X) P, c #0, kg > 0,8 > V2.









Passing the Limit

oM — o, L =T —2r@m+ BN,
OxN — oM = DL+ 2rDm— ()N,
LN — M2 = K, (Monge-Ampere constraint)

Theorem (Weak Continuity of a 2 x 2 Determinant)
LetQ c R x R* = R2 be a bounded open set and
Ut = (uUf, us, U5, uf) : Q — R* be measurable functions satisfying

U — u=(th, U, U3, Ug) in 15(Q),

and
oui | 0us Ui | 9uf
ot ox’ ot ox
Then there exists a subsequence (still labeled) u® such that

are compact in Hp, ().

uy U
u; uj

u U
Us Us

—

in the sense of distributions.




Vanishing artificial viscosity approach

Joint with W. Cao and F.-M. Huang.

Artificial viscosity:

with

where



The eigenvalues and Riemann invariants are:

—M +1
7
Introduce new variables:
m 1
u= — =, V = <.
L L

Vv )
2
Vy + (uvyx — vuy) = g(U, V) + eVyx — 25‘/"*,
with

{uy + (Uly — Wy) = F(U, V) + clyy — 28

f(u,v) = tfgz + (NIN'g2 - 2f~]2)u + (2%, - 1) + T v2 + 72 (1P — v®)u,
g(u,v) =T5,v+T5uv + T3, (u? — v3)v.



The eigenvalues are

M=U—-V, do=U+V.
The Riemann invariants are:

W=u+vVv, Z=U-—V.

Wy + MWy = eWyy — ZEVTXWX + f(u,v) +9(u, v),
Zy + AZZX = &Zxx — Z‘EVTXZX + f(U, V) - g(“v V)'



Invariant regions
First fundamental form:

| = Edx? + 2Fdxdy + Gdy?.

1. Catenoid-type surfaces:

E(y) = (ccosh(y/c))# 1, F=0,

2

r(y) = —c*(B2 = 1)E(y) ",

2. Helicoid-type surfaces:

E(y)202+y27 F:07
2

C
K(y) = —W,

c#0.
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Christoforou and Slemrod (2015): Gauss curvature decays as in Hong



Leading Edge

Cell

Differential Geometry Meets the Cell

Wallace F. Marshall'-*

1Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
*Correspondence: wallace.marshall@ucsf.edu

http://dx.doi.org/10.1016/j.cell.2013.06.032

A new study by Terasaki et al. highlights the role of physical forces in biological form by showing
that connections between stacked endoplasmic reticulum cisternae have a shape well known in
classical differential geometry, the helicoid, and that this shape is a predictable consequence of
membrane physics.

Cell 154, July 18, 265-266, 2013.

Terasaki, M., Shemesh, T., Kasthun, N., Klemm, R.W., Schalek, R., Hayworth, K.H., Hand, A.R., Yankova, M.,

Huber, G., Lichtman, J.W., et al. (2013). Cell 154, July 18, 285-296.



Finite difference approximation approach:
Lax-Friedrichs scheme

Joint with W. Cao and F. Huang.

Write the Gauss-Codazzi equations as a system of balance
laws:
Uy + f(U)x = H(U, x,y).



Finite difference approximation approach:
Lax-Friedrichs scheme

Joint with W. Cao and F. Huang.

Write the Gauss-Codazzi equations as a system of balance
laws:
Uy + f(U)x = H(U, x,y).

Approximate solutions U" by the fractional Lax-Friedrichs
scheme: Riemann solutions and fractional step.



Finite difference approximation approach:
Lax-Friedrichs scheme

Joint with W. Cao and F. Huang.

Write the Gauss-Codazzi equations as a system of balance
laws:
Uy + f(U)x = H(U, x,y).

Approximate solutions U" by the fractional Lax-Friedrichs
scheme: Riemann solutions and fractional step.

Take the metric and Gauss curvature:
g=B(y)?dx®+dy?, k(y) =—k(y)?,

and In(B?k) is C' and nondecreasing in y.






my+ 1+ [-2mf(& + %) - (mg’p)h:_1(%+%)]h

o+ [yl — 2mp e — TR (- BByl
wh+ [(Wh+2B) (B + %) — whzp(% + %)ln

1+[———(WR+ZR)2K WRZR( BB;)|h
mh — 1+ [-2mi (8 + k) - (’"';); LB 4+ ) lh

Ph+ (R —2mik; - (mfi)h:_1(—331)]h
2+ (WA + 2) (% + %) — whzh(% + 5)lh

1+ [—— — (WR + zR)zk WRZR(—BBt)]h



Wh = ng+ hF(ngvzlg7X7 t, h)

zh = ZB + hF (2B, wh, x, t, h),

where

—(% - %)wﬂ (& + J)zh — BBi(wh)?(2h)

F(wh, zP x,t.h) =
(wi. 2 ) 1—[ (WR+ZR) BB;WRZR]h

(BBX + éz)w/%z{% + se(Wh)
1—[& 4 Ke(wh + zh) — BBwhzhh




wh = wh + hF(wh, 2B, x. t, h)

zh = 2B+ hF (2B, wh, x, t, h),

where
F(wh, zh x. t.h) = (8- %)WE (B + 25)2h — BBi(wh)*(2f)
o 1—[% 4 & (wh + 2f) — BBwhzfh
(BB* + éz)w/%zz+ sWh?
1—[% 4 &(wh + 2f) — BBwhzfh

L*> weak solution: Uniform estimate, convergence, and
consistency.



Wh = ng+ hF(W,g,Z,g,X, t, h)

zh = ZB + hF (2B, wh, x, t, h),

where
F(wh. zh x,t,h) = (8- %)Wg (B + k)2 — BB{(Wh)*(2h)
T 1—[% 4 & (wh + 2f) — BBwhzfh
—(%* + k*)W/%Zﬂ + gk (Wh)?
1 [+ S (wh+zf) - BBtWRZE]h

L*> weak solution: Uniform estimate, convergence, and
consistency.

Recent work: S. Li (weak solution for more metrics), ......



Smooth isometric immersion

Cao-Han-Huang-W. (2023)

Let (M, g) be a smooth complete simply connected surface with a
negative Gauss curvature K and

/ K|dAg < oo,
M

where dAg is the area element of g. Assume that in some geodesic
polar coordinates (¢, p) on (M, g), K has the decomposition

PPTIK|(0, p) = K(p)@(0,p) for plarge,
where v € (0, 1) is a constant and K and a are positive functions

such that K(p) is monotone for p large, and a,a~", 9} log a, pd}0, log a
are bound fori = 1,2, 3,

/ maax|8pa|dp < 0.
]

Then, (M, g) admits a smooth isometric immersion in R3.



Isometric Embedding of M into RN, d > 3



Isometric Embedding of M into RN, d > 3

Nash (1965), Gunther (1989): smooth embeddings.
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Nash (1965), Gunther (1989): smooth embeddings.

Gunther (1989):  Any smooth d-dimensional compact
Riemannian manifold admits a smooth (i.e. C*>) isometric
embedding in RN for

N = % max{d(d +5), d(d + 3) + 10}.
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Riemannian manifold admits a smooth (i.e. C*>) isometric
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Isometric Embedding of M into RN, d > 3

Nash (1965), Gunther (1989): smooth embeddings.
Gunther (1989):  Any smooth d-dimensional compact

Riemannian manifold admits a smooth (i.e. C*>) isometric
embedding in RN for

N = % max{d(d +5), d(d + 3) + 10}.

Janet dimension: ;

Not elliptic: S.-S. Chern and H. Levy.



Gauss-Codazzi-Ricci System
The Gauss equations:
hihg — highi = Ri;
The Codazzi equations:
ohi  Ohf
072 — aT/j + TN, — TRhR + kiphp — kbR = 0;
The Ricci equations:
Ok} OKRy B
oxk  ox!

Rjx: Riemann curvature tensor,

hi- . Coefficients of the second fundamental form,

mﬁ): Coefficients of the connection form on the normal bundle,
1<ab<N-d 1<ij kIl mn<d.

mn a b a pb a , .c a,c __
g (hmlhkn - hmkhln) + Kkl — Kigtikp = 0



The Div-Curl Structure

Forw = (wy,wa,- -, wy), curlw := (9jw; — 0iW))1<ij<d-
Codazzi equations: k </,

k

L ——
div(0,-- ,h2,0,--- ,—hZ.0,--- ,0) + l.o.t =0,

!
curl(h$;, hg;, - -, hg) + l.o.t =0,
Ricci equations:
k
div(0,---,0,k%},0,- -+ ,—K%,0,--- ,0)+ lo.t =0,
I

a a a
CUI’|(/~£1b, HZb’ s ,:‘idb) + /Ot = 0

Scalar products yield the quadratic terms.



Div-Curl Lemma

Let Q c RY, d > 2, be open bounded. Let p, g > 1 such that
1 + 1 = 1. Assume that, for any ¢ > 0, two fields

uf € LP(Q RY) and ve € LI(Q; RY) satisfy the following:
i. u° — uweakly in LP(Q;RY) as e — 0;
i. v — vweaklyin LI(Q;RY) as e — 0;
iii. div u® are confined in a compact subset of W,_, ’p(Q R);
iv. curl V‘E are confined in a compact subset of
W= 7CI(Q Rdxd)

loc
Then the scalar product of u® and v¢ are weakly continuous:

u-ve—u-v

in the sense of distributions.



Weak Continuity: Chen-Slemrod-D.W. (PAMS)

The weak limit of a sequence of solutions to the
Gauss-Codazzi-Ricci system is still a sloution.
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Weak Continuity: Chen-Slemrod-D.W. (PAMS)

The weak limit of a sequence of solutions to the
Gauss-Codazzi-Ricci system is still a sloution.

Let (hj*, ") be a sequence of solutions to the

Gauss-Codazzi-Ricci system, which is uniformly bounded in L,
p > 2. Then the weak limit vector field (hf, x{,) of the sequence
(h3°, ") in LP is still a solution to the Gauss-Codazzi-Ricci
system.

3-D manifold into R®: local isometric embedding,
Bryant-Giriffiths-Yang (83), Chen-Clelland-Slemrod-W. -Yang (18).



Weak Continuity: Chen-Slemrod-D.W. (PAMS)

The weak limit of a sequence of solutions to the
Gauss-Codazzi-Ricci system is still a sloution.

Let (h,/ , k") be a sequence of solutions to the
Gauss-Codazzi-Ricci system, which is uniformly bounded in L,
p > 2. Then the weak limit vector field (hf, x{,) of the sequence
(hjs, k3°) in LP is still a solution to the Gauss-Codazzi-Ricci
system.

3-D manifold into R®: local isometric embedding,
Bryant-Giriffiths-Yang (83), Chen-Clelland-Slemrod-W. -Yang (18).

More recent works: G.-Q. Chen- S. Li, Chen-Giron, .....
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