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Gaussian tails

The Gaussian distribution has extremely light tails:

Plg > f] = P[e*9 > V]
_ e MHN/2

—e 2 fora=t.




Application: the norm of a Gaussian matrix

For A€ Mp(R), [[Allop = sup_ |AX], = sup (Ax,y).
xeSn— X,yeSn—

For an n x n Gaussian random matrix G,

(Gx,y) = Zguxm N(0,1),

s0 || Gl|op is the supremum of a Gaussian stochastic process.



Application: the norm of a Gaussian matrix
N C 8" 'isa (1/4)-netif: Vx € S"~! 3y € N such that

Ix =yl < 3.

Lemma

Q [Allgp <2 sup (Ax,y).
X, yeN

@ Thereis a ;-netN C S™ with #N < 9".

P[l|Gllop > f] < P| sup (Gx,y) > t/2

x,s}tjepN
< Y P[(Gx,y) > 1/2]

X, yeN
< 81 ne—t2/8

~E |Gl 4 < Cv/nand ||Gll,, < C'v/n with high probability.



Spherical tails
Recall the Poincaré limit: if 6 ~ unif(S"~") then v/nd; ~ N(0,1).

This phenomenon extends to the tails:
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Almost all the mass on S"~' is within ~ - of an equator.
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Isoperimetric inequalities

Classical: For X C R", vol,_1(0X) > vol,_1(0B), where Bis a
ball with vols(B) = vols(X).

More refined version: Write X; = {y € R"|d(X,y) < t}.

Round balloons are the easiest to inflate!

Spherical version: For X € S"~1, write
Xi={y eS8 d(X,y) <t}

Then vol,,_1(X;) > vol,_1(B;), where B C S"' is a spherical
cap with vol,_1 (B) = volp_1 (X)



Concentration of measure on the sphere

If vol,—1(X) > £ volp_1(S"~1), then

P[0 e X]>Pl0eB]>1—e "

Theorem (Lévy’s lemma)

Suppose F : 8"~ — R is 1-Lipschitz, and M is a median of
F(6). Then

P[F(0) > M+ 1] < e,

Fluctuations of F(#) are of size O (ﬁ)



Gaussian concentration

This fact and the Poincaré limit lead to:

Theorem (Borell, Sudakov—-Tsirelson)

Suppose F : R" — R is 1-Lipschitz, and M is a median of F(g).
Then ,
P[F(g) > M+t < e .

Under a concentration result like this, all notions of the average
value are basically equivalent:

° [EF(9)-M|<C
@ EF(g) < \/EF(9)2 < CEF(g)if F > 0.



Quick application: concentration of norms

Ellgl2 = n~ P[|llgll, — vn| > t] <2e~°".

So for x € R fixed, ||Gx||, ~ v/n|x||, with very high probability.

Similarly, | Gl|,, ~ v/n with O(1) fluctuations.



From spheres to manifolds

Theorem (Bishop—Gromov comparison theorem)

Suppose M is an n-dimensional compact connected
Riemannian manifold with Ricci curvature > K > 0.

Then the volume on M concentrates around balls at least as
strongly as on an n-sphere of Ricci curvature K.

In particular, if F : M — R is 1-Lipschitz and X ~ unif(M), then

P[F(X) — EF(X) > {] < 26K,



Concentration on the classical compact groups (finally)

The Ricci curvature on SO(n), SU(n), and Sp(n) is > cn.

Theorem (Gromov, Gromov—Milman)

IfG =S0O(n), SO~(n), SU(n), orSp(n) and F : G - R is
1-Lipschitz, then

P[F(U) — EF(U) > f] < 2e~°".
But:

O(n) isn’t connected, and U(n) doesn’t have a positive lower
bound on curvature.



Concentration on the classical compact groups

Dealing with O(n):
@ Are you sure don’t actually just want to work with SO(n)?

@ Condition on det U: equal probability of being in SO(n) and
SO~ (n).

Dealing with U(n):
@ Let V € SU(n) be Haar-distributed and X ~ unif [0, Lﬁ]
be independent.

@ Then U = eV2X/Vy ¢ U(n) is Haar-distributed.
@ The theorem on the last slide also applies when G = U(n).



Quick application: concentration of norms again

Let Px € M, x(R) be the first kK columns of a random U <€ O(n)
(equivalently, U € SO(n)).

Py is essentially the projection onto a random E € G, .

Easy computations:
@ For fixed x € R", F(U) = || Pxx||, is | x||,-Lipschitz.

2 2 2 _ K|yl
© E[[Pexllz = lIxIE [ Prerllz = 7 lIx]2-

Therefore,

k
1Pkx]l2 — \[nHXHz
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Convergence of the spectral measure: a no-work proof

n
Let f: C — R be 1-Lipschitz, and define F(U) = 1 Z f(\i(U)).

n
i=1
By invariance, if U € U(n) is random, then
1 2m 0
EF(U) = — f(e :
V) =5 | fe"ao
By the Hoffman—Wielandt inequality, F is —=-Lipschitz.
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Convergence of the spectral measure: a no-work proof

So for each fixed 1-Lipschitz f : C — R,

<1
S e

> ) - 217 OZW f(e) do| > CV";g”]

n
P[1
n
i=1

By the Borel-Cantelli lemma, if U, € U(n) is random for each n,
then with probability 1

1 2 0
1
E:f 277/ f(e) db| <

for all sufficiently large n.
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Tensorizable concentration

Using logarithmic Sobolev inequalities (Bakry—Emery, Herbst)
the Gromov—Milman result generalizes to:

Theorem

Suppose Uy, ..., Un € G are Haar-distributed in any of the
connected groups and independent and F : M,(C)™ — R is
1-Lipschitz. Then

P[F(Us,...,Un) —EF(Ui,...,Up) > 1] < e,

The upper bound here is independent of m.



Another tool for next time: Dudley’s inequality

A subgaussian random process is a collection of random
variables {X,|u € T} indexed by metric space T such that

P X, — X,| > 1] < 2~ */dW)?,

Theorem (Dudley’s entropy bound)
If{Xu|lu € T} is a centered subgaussian random process then

Esup X, < C \/IogN(T,e) de,

ueT

where N(T,¢) is the smallest number of <-balls needed to cover
T.

log N(T,¢) is called the metric entropy.
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