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Today’s first slogan

Not-too-low-rank projections act almost like isometries.



Concentration of a norm
Let Px € M, x(R) be the first k columns of a random U € O(n).

Recall from last time:

[1Pkx]l2 — \/7||X||2

([ ||x||2) ] < 2079,



Concentration of many norms

If x1,...,xm € S" 1, then with probability at least
1 — 2me—cke*

we have
|| k I||2 < 1 +€

\f Il

for every i.



High-dimensional intuition

This phenomenon is surprising to our two/three-dimensional
brains:

but makes more sense from a properly high-dimensional
perspective.



The Johnson—Lindenstrauss lemma

Applying the argument to the (3) points x; — x;, we get:

Theorem (~ Johnson—Lindenstrauss)
If k > 5 log m, then with probability at least

1 - 2g Cke®

we have

P =)l _,

‘Hx, x|,

for every i and j.



Dimension reduction

The punchline:

Projecting {x;}/"; C R" onto a =~ log m-dimensional subspace
barely changes the distances between the points. (Probably.)

Why you should care:

Algorithms that depend only on distances between
n-dimensional data points can be run on the

~ log m-dimensional projections instead, lifting the curse of
dimensionality!



Restricted Isometry Property

Combining the same ideas with a discretization argument
yields:

Theorem (~ Candes-Tao)
If k > Cslog (<), then with probability at least
1 -2 %

we have p
0.9 < Pl <11

o k
N

for every x € R" with < s nonzero components.
Yy



Sparse signal recovery

Corollary

Ifk > Cslog(<), then with probability at least 1 — 2e~°K the
following holds:
If x € R™ has < s nonzero components, then

X = argmin HX’H1.
X' :Pex!=Pyx

Why you should care:

Under the assumption that x is sparse, it can (probably!) be
recovered from Py x via a convex program.



Today’s second slogan

Not-too-high-dimensional sections/projections are almost
all alike.



The Dvoretzky—Milman theorem
Let ||-|| be an arbitrary norm on R".
For normalization, assume ||-||, < ||-||.
M :=E||0| for § ~ unif(S™ ).

Theorem (V. Milman, Gordon)

Suppose k < cs?M?n and let E € G, be random. Then with
probability at least 1 — 2e— K,

x|
1—e< <1+e¢
M| x|,

for every x € E.



The Dvoretzky—Milman theorem
The punchline:

On a random ~ 2 M?n-dimensional subspace, ||| is basically
the same as ||-||,.
Or:

A random ~ 2M?n-dimensional section of a symmetric convex
body is basically a Euclidean ball.

Random 2-dimensional subspaces of ¢]%° and ¢1900000,

A version for projections follows by duality.



Dvoretzky’s theorem

The Dvoretzky—Rogers lemma roughly says that we can
arrange to have M < cy/'",

Theorem (Dvoretzky)

If B is an infinite-dimensional Banach space, then for every k, B
has k-dimensional subspaces which are arbitrarily close to
being Hilbert spaces.



Sketch of proof of Dvoretzky—Milman
Fix F € Gyk. Then E ~ U(F).
P[||Ux| — ||Uy]|| > t] < 2e~¢nt/Ix—ylz

Thus {||Ux|| — M} is a subgaussian random process indexed by
x € ST nFwith d(x,y) = n~"2 | x — y||,.

Dudley’s entropy bound =
k
B s [|Ux - M < 0K
xeSn—1nF n

So for a typical E, ||y|| ~ M for every y € S""'n E.



Projections of measures
Observation (Sudakov, Diaconis—Freedman, ...):

If you project a high-dimensional probability measure /
data set onto one or two dimensions, the result nearly
always looks Gaussian.

Figure from Buja, Cook, and Swayne “Interactive High-dimensional Data Visualization”, 1996.



Measure-theoretic Dvoretzky theorem

The bounded Lipschitz distance between X and Y is

A (X, Y) = sup [E(X) - E(Y)l.
[

Theorem (E. Meckes)
Suppose that X € R" satisfies

n

and that k < (2 — e) .

Then for almost all E € Gpk, dp.(me(X), Zg) is small, where Zg
is a standard Gaussian vector in E.




Measure-theoretic Dvoretzky theorem

If k > (2 + ¢) gk, there is an X such that dg; (we(X), Ze) > ¢
for every E € én,k.

Theorem (Klartag, ...)

If X € R" satisfies EX = 0, EX;X; = ¢;, and is log-concave, and
k < cn®, then dry(me(X), Zg) is small for almost all E € Gp, k.



Outline of proof of measure-theoretic Dvoretzky
First step — annealed version:

Let ;¢ be the distribution of 7£(X) € RX.
Then dg; (Epg, N(0, Ix)) is small (~ Poincaré limit).

Second step — average distance to the average:

Edp (1e, Epe) = Esgpp [(me(X)) — E¢(me(X))] is the expected

supremum of a centered subgaussian random process
(concentration on SO(n): E = U(F)).
We can bound it using Dudley’s entropy bound.

Third step — from annealed to quenched:
ds (e, 1) is a Lipschitz function of U, and hence is usually not
much bigger than its mean.



Additional reference

@ Roman Vershynin, High-Dimensional Probability: An
Introduction with Applications in Data Science, Cambridge,
2018.



