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Asymptotic regimes

The largest portion of Random Matrix Theory focuses on the
distributions of eigenvalues when n — oo, in the

@ macroscopic regime:

o all the eigenvalues,
e the whole circle S',
e gaps ~ 1,

@ microscopic regime:
e afixed number the eigenvalues,
e anarc of length ~ 1,
e gaps ~ 1.

@ mesoscopic regime: anything in between.



Classical limit theorems

The macroscopic limit theorems are analogous to the classical
limit theorems of probability.

Let {X;} be i.i.d. random vectors in RY.

Law of large numbers:

n
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a.s. for every v € RY (equivalently, all v in a basis).



Classical limit theorems

Central limit theorem:
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for every v € RY.

N(0,1)

Large deviations principle (Cramér’s theorem):
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for nice A C RY.



Empirical spectral measure
Macroscopic random matrix theory considers the empirical
spectral measure of U:
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(linear eigenvalue statistic)




Expectations
v denotes the uniform measure on S'.
If G = U(n) is random then Epy = v by symmetry.

If G is one of the other groups then symmetry isn’t enough, but
the Diaconis—Shahshahani calculations imply

E/deMU,H—Oo>5k70:/deV
forall k € Z, so
E/fduU'H—oo>/fdu

for all nice f.

Thatis, Epy =25 v.



Law of large numbers

Theorem (Diaconis—Shahshahani)
For any nice f and any of the groups,

with probability one.

That is, py =225 v weakly almost surely.

A few quick proofs:

@ Compute Varfzk duy from Diaconis—Shahshahani, use
Chebyshev and Borel-Cantelli.

@ Measure concentration + Borell-Cantelli (as in Part Il1).

@ Euy(A) = [ 14 duy and Var py(A) can be estimated using
the determinantal kernel. (More on this next time.)



Central limit theorems

Theorem (Soshnikov)
Forany G, if AC S' is a fixed arc, then

NA - ENA _ MU(A) B EMU(A) n—oo N(O, 1)

v/Var Ny /Var ua(A) D

Update of Soshnikov’s proof:

Ny is distributed as a sum of independent Bernoulli random
variables.

Var Ny ~ log n — oo, so the Lindeberg central limit theorem
applies.



Central limit theorems

Theorem (Wieand)

Let U € U(n). For0 < a < 3 < 2r, define
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Then any finite collection of { X, g} converges in distribution as
n — oo to a centered jointly Gaussian family with

COV(Xaﬂ, Xo/,,B’) =
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Central limit theorems
Idea of Wieand’s proof:

The multivariate moment generating function

n k
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can be written as a Toeplitz determinant.

The surprising covariance structure has a simple
explanation/interpretation...



Central limit theorems

Theorem (Diaconis—Evans)

Let U € U(n). For f in the Bessel potential space (Sobolev
space) H'/2(S"), define

Xf:/fd,uu—/fdy.

Then any finite collection of { X;} converges in distribution as
n — oo to a centered jointly Gaussian family with

Cov(Xr, Xg) = (F, @) /2 -



Central limit theorems

Idea of Diaconis—Evans’s proof:
Use (refinements of) Diaconis—Shahshahani computations and
Fourier approximation of f ¢ H'/2.

Indicators of intervals are not in H'/2, but the method can be
extended to recover Soshnikov/Wieand’s results.

The methods extend to O(n) and Sp(n).



Large deviations principle

Theorem (Hiai—Petz)
Let U € U(n). For a nice AC P(S"),
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(roughly).

The quantity in the inf is the logarithmic energy / free entropy
&(p)-

&(p) > 0, with = only for p = v.

Very roughly: P[uy € Al ~ g Minfal

wy is very unlikely to be very different from v.



Microscopic limits

The determinantal point process structure is at the heart of the
microscopic regime.

The rescaled eigenangles {7-6;} of U € U(n) are a DPP on
[—n/2,n/2] with kernel

sin(7T(X - y) n—oo_ sin (m(x —y))

Kn(x,y) = nsin (Z(x — y)) (X =)

Theorem

The point process of rescaled eigenangles {5-6;} of U € U(n)
converges as n — oo to a DPP on R with kernel

Ksine(X, ) = Sm’/‘EZT)EX—_yil))



Microscopic limits

This almost immediately yields:

Corollary

The joint intensities of { ;-6;} converge as n — oo to the joint
intensities of the sine kernel process.

The counting functions Ny for the process {5-6;} converge in
distribution as n — oo to the counting functions of the sine
kernel process.



Microscopic limits

The DPP structure contains a lot of information about
gaps/spacings as well, e.g.:

Proposition

The distribution of the gap between two successive points in a
translation-invariant DPP on R has a density
d2
ax2 det(/ — To x));
where T x is the integral operator on L?(0, x) given by the
DPP kernel and det is a Fredholm determinant.



Typical gaps
On average, the gap between adjacent eigenvalues is 27”

How does a random matrix tend to vary from that?

Theorem (Soshnikov)

For s > 0, let n(s) be the number of gaps > 27“3 between
adjacent eigenvalues of U € U(n).
Then
n(s) —En(s) n-oo
Varn(s) D

N(0,1).

This result extends in various ways:

@ to mesoscopic scales,
@ to a process-level result for s > 0,
@ to other groups.



Small gaps

Theorem (Vinson, Ben Arous—Bourgade)

Let ~ denote the k™ smallest gap between adjacent
eigenvalues of U € U(n).
Then n*/3~, converges in distribution as n — oo to a random
variable with density on (0, o)
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Moreover, the point process {n*/3~;} converges to a Poisson
point process with explicit intensity.



Big gaps

Theorem (Feng—Wei)

Let Ty denote the k" largest gap between adjacent eigenvalues

of U € U(n).
Then
Ty = ;jﬁ (N —+/32logn) — g log(2log n)

converges in distribution as n — oo to a Gumbel random
variable with a certain mean.

Moreover, the point process {F,-} converges to a Poisson point
process with explicit intensity.

V32logn

In particular, 'y ~ p



What else?

Some other types of asymptotic spectral results:

@ Mesoscopic results

@ Asymptotics for characteristic polynomials.

@ Eigenvalues of truncations of Haar-distributed random
matrices.
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