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Asymptotic regimes

The largest portion of Random Matrix Theory focuses on the
distributions of eigenvalues when n→∞, in the

macroscopic regime:
all the eigenvalues,
the whole circle S1,
gaps ≈ 1

n ,

microscopic regime:
a fixed number the eigenvalues,
an arc of length ≈ 1

n ,
gaps ≈ 1.

mesoscopic regime: anything in between.



Classical limit theorems

The macroscopic limit theorems are analogous to the classical
limit theorems of probability.

Let {Xi} be i.i.d. random vectors in Rd .

Law of large numbers:〈
1
n

n∑
i=1

Xi , v

〉
n→∞−−−→ 〈EX1, v〉

a.s. for every v ∈ Rd (equivalently, all v in a basis).



Classical limit theorems

Central limit theorem:〈1
n
∑n

i=1 Xi , v
〉
− 〈EX1, v〉√

Var
〈1

n
∑n

i=1 Xi , v
〉 n→∞−−−→

D
N(0,1)

for every v ∈ Rd .

Large deviations principle (Cramér’s theorem):

1
n

logP

[
1
n

n∑
i=1

Xi ∈ A

]
n→∞−−−→ − inf

x∈A
Λ∗X1

(x)

for nice A ⊆ Rd .



Empirical spectral measure
Macroscopic random matrix theory considers the empirical
spectral measure of U:

µU =
1
n

n∑
j=1

δλj .

Classical limit theory Random matrix theory
1
n

n∑
j=1

Xj µU

Rd M(S1) or P(S1)〈
1
n

n∑
j=1

Xj , v

〉 ∫
f dµU =

1
n

n∑
j=1

f (λj)

(linear eigenvalue statistic)



Expectations

ν denotes the uniform measure on S1.

If G = U(n) is random then EµU = ν by symmetry.

If G is one of the other groups then symmetry isn’t enough, but
the Diaconis–Shahshahani calculations imply

E
∫

zk dµU
n→∞−−−→ δk ,0 =

∫
zk dν

for all k ∈ Z, so

E
∫

f dµU
n→∞−−−→

∫
f dν

for all nice f .

That is, EµU
n→∞−−−→ ν.



Law of large numbers

Theorem (Diaconis–Shahshahani)
For any nice f and any of the groups,∫

f dµU
n→∞−−−→

∫
f dν

with probability one.

That is, µU
n→∞−−−→ ν weakly almost surely.

A few quick proofs:
Compute Var

∫
zk dµU from Diaconis–Shahshahani, use

Chebyshev and Borel–Cantelli.
Measure concentration + Borell–Cantelli (as in Part III).
EµU(A) =

∫
1A dµU and Var µU(A) can be estimated using

the determinantal kernel. (More on this next time.)



Central limit theorems

Theorem (Soshnikov)

For any G, if A ⊆ S1 is a fixed arc, then

NA − ENA√
Var NA

=
µU(A)− EµU(A)√

Var µA(A)

n→∞−−−→
D

N(0,1).

Update of Soshnikov’s proof:

NA is distributed as a sum of independent Bernoulli random
variables.

Var NA ≈ log n→∞, so the Lindeberg central limit theorem
applies.



Central limit theorems

Theorem (Wieand)
Let U ∈ U(n). For 0 ≤ α < β < 2π, define

Xα,β =
π√

log n
(
N[α,β] − EN[α,β]

)
.

Then any finite collection of {Xα,β} converges in distribution as
n→∞ to a centered jointly Gaussian family with

Cov(Xα,β,Xα′,β′) =



1 if α = α′, β = β′,

1/2 if α = α′, β 6= β′,

1/2 if α 6= α′, β = β′,

−1/2 if α = β′ or β = α′,

0 otherwise.



Central limit theorems

Idea of Wieand’s proof:

The multivariate moment generating function

Eet1NA1
+···+tk NAk = E

n∏
j=1

exp

(
k∑

i=1

ti1λj∈Ai

)

can be written as a Toeplitz determinant.

The surprising covariance structure has a simple
explanation/interpretation...



Central limit theorems

Theorem (Diaconis–Evans)
Let U ∈ U(n). For f in the Bessel potential space (Sobolev
space) H1/2(S1), define

Xf =

∫
f dµU −

∫
f dν.

Then any finite collection of {Xf} converges in distribution as
n→∞ to a centered jointly Gaussian family with

Cov(Xf ,Xg) = 〈f ,g〉H1/2 .



Central limit theorems

Idea of Diaconis–Evans’s proof:
Use (refinements of) Diaconis–Shahshahani computations and
Fourier approximation of f ∈ H1/2.

Indicators of intervals are not in H1/2, but the method can be
extended to recover Soshnikov/Wieand’s results.

The methods extend to O(n) and Sp(n).



Large deviations principle

Theorem (Hiai–Petz)

Let U ∈ U(n). For a nice A ⊆ P(S1),

1
n2 logP [µU ∈ A]

n→∞−−−→ − inf
ρ∈P(A)

[
−
∫∫

log |z − w | dρ(z) dρ(w)

]
(roughly).

The quantity in the inf is the logarithmic energy / free entropy
E(ρ).

E(ρ) ≥ 0, with = only for ρ = ν.

Very roughly: P[µU ∈ A] ≈ e−n2 infA E.

µU is very unlikely to be very different from ν.



Microscopic limits

The determinantal point process structure is at the heart of the
microscopic regime.

The rescaled eigenangles { n
2πθj} of U ∈ U(n) are a DPP on

[−n/2,n/2] with kernel

K̃n(x , y) =
sin
(
π(x − y

)
n sin

(
π
n (x − y)

) n→∞−−−→ sin (π(x − y))

π(x − y)
.

Theorem
The point process of rescaled eigenangles { n

2πθj} of U ∈ U(n)
converges as n→∞ to a DPP on R with kernel

Ksine(x , y) =
sin (π(x − y))

π(x − y)
.



Microscopic limits

This almost immediately yields:

Corollary
The joint intensities of { n

2πθj} converge as n→∞ to the joint
intensities of the sine kernel process.
The counting functions NA for the process { n

2πθj} converge in
distribution as n→∞ to the counting functions of the sine
kernel process.



Microscopic limits

The DPP structure contains a lot of information about
gaps/spacings as well, e.g.:

Proposition
The distribution of the gap between two successive points in a
translation-invariant DPP on R has a density

d2

dx2 det(I − T(0,x)),

where T(0,x) is the integral operator on L2(0, x) given by the
DPP kernel and det is a Fredholm determinant.



Typical gaps
On average, the gap between adjacent eigenvalues is 2π

n .

How does a random matrix tend to vary from that?

Theorem (Soshnikov)

For s > 0, let η(s) be the number of gaps ≥ 2π
n s between

adjacent eigenvalues of U ∈ U(n).
Then

η(s)− Eη(s)√
Var η(s)

n→∞−−−→
D

N(0,1).

This result extends in various ways:

to mesoscopic scales,
to a process-level result for s > 0,
to other groups.



Small gaps

Theorem (Vinson, Ben Arous–Bourgade)

Let γk denote the k th smallest gap between adjacent
eigenvalues of U ∈ U(n).
Then n4/3γk converges in distribution as n→∞ to a random
variable with density on (0,∞)

3
(k − 1)!

x3k−1e−x3
.

Moreover, the point process {n4/3γi} converges to a Poisson
point process with explicit intensity.



Big gaps

Theorem (Feng–Wei)

Let Γk denote the k th largest gap between adjacent eigenvalues
of U ∈ U(n).
Then

Γ̃k =

√
log n

2
√

2
(nΓk −

√
32 log n)− 3

8
log(2 log n)

converges in distribution as n→∞ to a Gumbel random
variable with a certain mean.

Moreover, the point process {Γ̃i} converges to a Poisson point
process with explicit intensity.

In particular, Γk ∼
√

32 log n
n

.



What else?

Some other types of asymptotic spectral results:

Mesoscopic results

Asymptotics for characteristic polynomials.

Eigenvalues of truncations of Haar-distributed random
matrices.
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