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Nonasymptotic random matrix theory

Classical random matrix theory focuses on limits as n→∞
(Part VI).

Nonasymptotic random matrix theory refers to results (usually
inequalities) involving quantities which are independent of n,
e.g.

P[Event(n)] ≤ Ce−cn.

This statement is trivial for small n, but very strong for large n.

Nonasymptotic results are crucial for applications to geometry,
statistics, computer science, ... (Part IV).

Nonasymptotic RMT blends macroscopic/microscopic scales.



Eigenvalue counting functions

Recall that the eigenvalues of a random U ∈ G form a
determinantal point process of n points with continuous
Hermitian kernel K .

In general:

ENA =

∫
A

K (x , x) dx dx ,

VarNA =

∫
A

∫
Ac
|K (x , y)|2 dx dy .

For eigenvalues of U ∈ G:∣∣∣ENA −
n

2π
|A|
∣∣∣ < 1,

VarNA ≤ C log n.



Concentration of eigenvalues counts

Since NA has the distribution of a sum of independent Bernoulli
random variables, Bernstein’s inequality implies

P
[∣∣∣NA −

n
2π
|A|
∣∣∣ ≥ t

]
≤ C exp

(
− ct2

log n + t

)
for all t > 0.

This implies a nonasymptotic rigidity for eigenvalues:

Proposition (E. Meckes and M.M.)
Let 0 ≤ θ1 ≤ · · · ≤ θn < 2π be the eigenangles of U ∈ G. Then
for each j,

P
[∣∣∣∣θj −

2πj
n

∣∣∣∣ ≥ t
n

]
≤ C exp

(
− ct2

log n + t

)
.



Comparison of eigenvalue counts

Theorem (E. Meckes and M.M.)

Let A ⊆ R be an interval, Un ∈ U(n), and let N(m)
A be the

number of eigenangles of Umn in 1
m A. Then

dTV (NA,N
(m)
A ) ≤ C

√
mn |A|2 .

This is small as long as |A| � n−1/4.

Corollary

dTV (N 1
n A,N

sine
1
n A ) ≤ Cn−3/2.

The proof of the theorem uses a general comparison principle
for DPPs, based on couplings of independent Bernoulli random
variables.



The spectral measure

µU =
1
n

n∑
j=1

δλj is the empirical spectral meaure of U.

ν is the uniform measure on S1

The L1-Wasserstein distance is

W1(µU , ν) = sup
‖ψ‖L≤1

∣∣∣∣∫ ψ dµU −
∫
ψ dν

∣∣∣∣,
where ‖ψ‖L = sup

x 6=y

|ψ(x)− ψ(y)|
‖x − y‖2

.

The Kolmogorov distance is

dK (µU , ν) = sup
A
|µU(A)− ν(A)|,

where the sup is over arcs A ⊆ S1.



The spectral measure

Theorem (E. Meckes and M.M.)

If U ∈ G is random then EW1(µU , ν) ≤ C
√
log n
n

.

Idea of proof: Eigenvalue rigidity.

Theorem (E. Meckes and M.M.)

If U ∈ U(n) is random then c
log n

n
≤ EdK (µU , ν) ≤ C

log n
n

.

Idea of proof for lower bound: Negative association for DPPs.

If µ =
1
n

n∑
j=1

δXj for {Xj} i.i.d. uniform in S1, then

EW1(µ, ν) ≈
1√
n
≈ EdK (µ, ν).



Concentration for linear eigenvalue statistics

Let f : S1 → R be 1-Lipschitz.

Concentration of measure and the Hoffman–Wielandt inequality
imply

P
[∣∣∣∣∫ f dµU − E

∫
f dµU

∣∣∣∣ ≥ t
]
≤ 2e−cn2t2

.

This and the previous estimates imply

P
[∣∣∣∣∫ f dµU −

∫
f dν

∣∣∣∣ ≥ t
]
≤ 2e−cn2t2

for t &
√
log n
n

.



Concentration for linear eigenvalue statistics

We have

P
[∣∣∣∣∫ f dµU −

∫
f dν

∣∣∣∣ ≥ t
]
≤ 2e−cn2t2

for every t &
√
log n
n

and every n.

The large deviations principle (Hiai–Petz) implies

1
n2 logP

[∣∣∣∣∫ f dµU −
∫

f dν
∣∣∣∣ ≥ t

]
n→∞−−−→ −α(f , t)

for fixed t .



Concentration for traces of powers

The function z 7→ zm is m-Lipschitz on S1, and so for U ∈ U(n)
we have

P
[∣∣TrUm − nδm,0

∣∣ ≥ t
]
≤ 2e−ct2/m2

.

We can do better using the result of Rains: if 1 ≤ m ≤ n,

TrUm ∼
m∑

k=1

TrUk

for Uk ∈ U(n/m) independent, and so

P
[∣∣TrUm − nδm,0

∣∣ ≥ t
]
≤ 2e−ct2/m

(consistent with Diaconis–Shahshahani).



Concentration of the spectral measure

µU is itself a Lipschitz function of U w.r.t. W1.

Theorem (E. Meckes and M.M.)

P
[
W1(µU , ν) ≥ C

√
log n
n

+ t
]
≤ e−cn2t2

.

Thus with probability 1, W1(µU , ν) ≤ C
√
log n
n

for all sufficiently
large n.

The crucial matrix-analytic property is that U is normal.



Spectra of powers

The proofs can be combined with Rains’s theorem:

Theorem (E. Meckes and M.M.)
For each 1 ≤ m ≤ n,

P

[
W1(µUm , ν) ≥ C

√
m(log(n/m) + 1)

n
+ t

]
≤ e−cn2t2/m.

If m = m(n), then with probability 1,

W1(µUm , ν) ≤ C

√
m(log(n/m) + 1)

n
for all sufficiently large n.

Thus µUm smoothly interpolates between the behavior of µU
and of i.i.d. samples.



Spectra of powers

Eigenvalues of Um for U ∈ U(80) and m = 1,5,20,45,80.



Rates of convergence in CLTs

Theorem (Döbler–Stolz)
For U ∈ U(n) and d ≤ n/2, let

X = (TrU,TrU2, . . . ,TrUd)

and
Y = (Z1,

√
2Z2, . . . ,

√
dZd),

where {Zj} are i.i.d. standard complex normals.

Then W1(X ,Y ) ≤ C
d7/2

n
.

Idea of proof: Diaconis–Shahshahani plus Stein’s method.



Rates of convergence in CLTs

Corollary (Döbler–Stolz)

For U ∈ U(n) and smooth f : S1 → R,

W1

(
n
(∫

f dµU −
∫

f dν
)
,N
(

0, ‖f‖2H1/2

))
= O

(
1

n1−ε

)
for every ε > 0.

Idea of proof: Last result plus Fourier approximation.

It is crucial here to be able to let d grow with n.



Rates of convergence in CLTs

Theorem (Johansson)
Let U ∈ U(n) and let Z be a standard complex normal random
variable. Then

dTV

(
1√
k
TrUk ,Z

)
≤ Ce−ck n log n.

Slightly weaker versions hold for the other groups.

Multivariate versions have been proved very recently by
Johansson–Lambert (U(n)) and Courteaut–Johansson (other
groups).



A question of Diaconis

In a talk in memory of Elizabeth Meckes, Persi Diaconis
observed:

Diaconis–Shahshahani and Johannson show that
TrUk is remarkably similar in distribution to

√
kZ .

In particular, there must be a coupling of these
random variables in which they are nearly equal.

And asked:

Can we construct such a coupling?
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