

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Gravitational Collapse of Self-similar Stars

M.R.I. SCHRECKER

Department of Mathematics University College London

Classical model of a star: sphere of gas under Newtonian gravity.

- Balance between pressure and gravity in a static star;
- As gas burns, balance shifts;

Classical model of a star: sphere of gas under Newtonian gravity.

- Balance between pressure and gravity in a static star;
- As gas burns, balance shifts;
- Possible collapse? Supernova?

Figure: Image credit: R.J. Hall

Euler-Poisson equations

The Euler-Poisson equations of gas dynamics with Newtonian gravity:

$$\begin{cases} \partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u}) = \mathbf{0}, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla_{\mathbf{x}} \rho(\rho) = -\rho \nabla \Phi, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \Delta \Phi = 4\pi\rho, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3. \end{cases}$$
(1)

 ρ is density, ${\bf u}$ is velocity, ${\bf p}$ is pressure, Φ is gravitational potential. We assume the equation of state

$$p = p(\rho) = \rho^{\gamma}, \quad \gamma \in (1, \frac{4}{3}).$$

Collapse

(日)

Collapse is the formation of a *singularity* at the origin, i.e.

 $ho(t,0)
ightarrow\infty$ as t
ightarrow0-.

- For $\gamma > \frac{4}{3}$, no finite mass and energy collapse possible.
- For $\gamma = \frac{4}{3}$, Goldreich–Weber collapse unsuitable model for outer core.

Previous Results

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つへつ

Classical and numerical work

- Taylor, Von Neumann, Sedov, Güderley '40s: study implosion and explosion for Euler equations;
- Larson–Penston '69: numerical solution for $\gamma = 1$;
- Hunter '77: family of numerical solutions for $\gamma = 1$;
- Yahil '83: numerical solutions for $\gamma \in [\frac{6}{5}, \frac{4}{3})$;
- Maeda–Harada '01: numerical evidence towards mode stability of Larson–Penston.

Previous Results

Classical and numerical work

- Taylor, Von Neumann, Sedov, Güderley '40s: study implosion and explosion for Euler equations;
- Larson–Penston '69: numerical solution for $\gamma = 1$;
- Hunter '77: family of numerical solutions for $\gamma = 1$;
- Yahil '83: numerical solutions for $\gamma \in [\frac{6}{5}, \frac{4}{3})$;
- Maeda–Harada '01: numerical evidence towards mode stability of Larson–Penston.

Recent works

- Merle–Raphaël–Rodnianski–Szeftel '22: existence of a imploding self-similar solutions for Euler;
- Guo–Hadzic–Jang '21: construction of LP solution.

Self-similar singularity formation (Type I)

Self-similarity and singularities interact in a wide range of problems.

- Stellar collapse;
- Formation/expansion of shock waves (Buckmaster–Shkoller–Vicol '20,...);
- Shock reflection (Chen–Feldman '18);
- Bacterial growth;
- Geometric wave equations (Costin–Donninger–Glogic '17,...);

• Yang–Mills (Bizon '00, Glogic '20,...);

• ...

Self-similar singularity formation (Type I)

Self-similarity and singularities interact in a wide range of problems.

- Stellar collapse;
- Formation/expansion of shock waves (Buckmaster–Shkoller–Vicol '20,...);
- Shock reflection (Chen–Feldman '18);
- Bacterial growth;
- Geometric wave equations (Costin–Donninger–Glogic '17,...);

- Yang-Mills (Bizon '00, Glogic '20,...);
- ...

Key Features:

- Non-linearity;
- Intertwining of spatial and time scales;
- Good initial data leads to badly behaved solutions!

Scaling and Self-similarity

Scaling

Let $\rho = \rho(t, r)$, $\mathbf{u} = u(t, r) \frac{\mathbf{x}}{|\mathbf{x}|}$, $r = |\mathbf{x}|$, solve Euler-Poisson, $\lambda > 0$. Then

$$\rho_{\lambda}(t,r) = \lambda^{-\frac{2}{2-\gamma}} \rho(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}), \quad u_{\lambda}(t,r) = \lambda^{-\frac{\gamma-1}{2-\gamma}} u(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda})$$

is also a solution. (NB: This is a unique scaling!)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Scaling and Self-similarity

Scaling

Let $\rho = \rho(t, r)$, $\mathbf{u} = u(t, r) \frac{\mathbf{x}}{|\mathbf{x}|}$, $r = |\mathbf{x}|$, solve Euler-Poisson, $\lambda > 0$. Then

$$\rho_{\lambda}(t,r) = \lambda^{-\frac{2}{2-\gamma}} \rho(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}), \quad u_{\lambda}(t,r) = \lambda^{-\frac{\gamma-1}{2-\gamma}} u(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda})$$

is also a solution. (NB: This is a unique scaling!)

Self-similarity

We define a *self-similar* variable

$$\gamma = \frac{r}{(-t)^{2-\gamma}},$$

and search for

$$\rho(t,r) = (-t)^{-2} \tilde{\rho}(y), \quad u(t,r) = (-t)^{1-\gamma} \tilde{u}(y).$$

ŵ

ODE system

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Defining a convenient variable $\omega(y) = \tilde{u}(y)/y + 2 - \gamma$, self-similar Euler-Poisson becomes

$$\begin{split} \tilde{\rho}' &= \frac{y \tilde{\rho} h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \\ \omega' &= \frac{4 - 3\gamma - 3\omega}{y} - \frac{y \omega h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \end{split}$$
(2)

where $h(\tilde{\rho}, \omega)$ is a quadratic function.

ODE system

Defining a convenient variable $\omega(y) = \tilde{u}(y)/y + 2 - \gamma$, self-similar Euler-Poisson becomes

$$\begin{split} \tilde{\rho}' &= \frac{\gamma \tilde{\rho} h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \\ \omega' &= \frac{4 - 3\gamma - 3\omega}{\gamma} - \frac{\gamma \omega h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \end{split}$$
(2)

where $h(\tilde{\rho}, \omega)$ is a quadratic function.

Definition (Sonic point)

Let $(\tilde{\rho}(\cdot), \omega(\cdot))$ be a C^1 -solution to the self-similar Euler-Poisson system on the interval $(0, \infty)$. A point $y_* \in (0, \infty)$ such that

$$G(\boldsymbol{y}, \tilde{\rho}, \omega) := \gamma \tilde{\rho}^{\gamma-1}(\boldsymbol{y}_*) - \boldsymbol{y}_*^2 \omega^2(\boldsymbol{y}_*) = \boldsymbol{0}$$

is called a sonic point.

Theorem

Initial/boundary conditions

For a regular solution, we require

$$ilde{
ho}(0) > 0, \quad \omega(0) = rac{4-3\gamma}{3},$$

 $ilde{
ho}(y) \sim y^{-rac{2}{2-\gamma}} ext{ as } y o \infty, \quad \lim_{y \to \infty} \omega(y) = 2 - \gamma.$

NB: this forces the existence of a sonic point!

Theorem

Initial/boundary conditions

For a regular solution, we require

$$ilde{
ho}(0) > 0, \quad \omega(0) = rac{4-3\gamma}{3},$$
 $ilde{
ho}(y) \sim y^{-rac{2}{2-\gamma}} ext{ as } y o \infty, \quad \lim_{y o \infty} \omega(y) = 2 - \gamma$

NB: this forces the existence of a sonic point!

Theorem (Guo–Hadzic–Jang–S. '21)

For each $\gamma \in (1, \frac{4}{3})$, there exists a global, real-analytic solution $(\tilde{\rho}, \omega)$ of self-similar Euler-Poisson with a single sonic point y_* such that:

$$ilde{
ho}(y)>0 ext{ for all } y\in [0,\infty), \quad -rac{2}{3}y< ilde{u}(y)<0 ext{ for all } y\in (0,\infty).$$

In addition, both ρ and ω are strictly monotone:

 $\widetilde{
ho}'(y) < 0 ext{ for all } y \in (0,\infty), \quad \omega'(y) > 0 ext{ for all } y \in (0,\infty).$

Regularity

Expect stability tied to regularity (MRRS '22). Requires smoothness through sonic point.

≜UCL

・ロット (雪) (日) (日) (日)

Regularity

Expect stability tied to regularity (MRRS '22). Requires smoothness through sonic point.

Non-linearity

Methods need to be adapted to specific non-linearities (no general recipe for solving such problems).

≜UCL

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つへつ

Regularity

Expect stability tied to regularity (MRRS '22). Requires smoothness through sonic point.

Non-linearity

Methods need to be adapted to specific non-linearities (no general recipe for solving such problems).

Non-autonomous system

Non-autonomous forces evolving phase portrait. No fixed phase portrait analysis for invariant regions.

Overview of Strategy

Two explicit solutions

Far-field solution (ρ_f , ω_f) and Friedman solution (ρ_F , ω_F):

$$(\rho_f(\mathbf{y}), \omega_f(\mathbf{y})) = (k_{\gamma} \mathbf{y}^{-\frac{2}{2-\gamma}}, 2-\gamma), \qquad (\rho_F(\mathbf{y}), \omega_F(\mathbf{y})) = (\frac{1}{6\pi}, \frac{4}{3}-\gamma).$$

Sonic points at $\nu_f(\gamma) < \nu_F(\gamma)$

<u>m</u>

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つへつ

Proposition (Local Solution)

For all $\gamma \in (1, \frac{4}{3})$, there exists $\nu > 0$ such that for all $y_* \in [y_f(\gamma), y_F(\gamma)]$, there exists an analytic solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ to self-similar Euler-Poisson on $(y_* - \nu, y_* + \nu)$ with a single sonic point at y_* .

Lemma (Solving to the right)

For each $\gamma \in (1, \frac{4}{3})$, each $y_* \in [y_f(\gamma), y_F(\gamma)]$, the local solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ obtained by Taylor expansion extends globally to the right on $[y_*, \infty)$, remains supersonic, and satisfies the asymptotic boundary conditions.

Overview of Strategy

Aim: Find \bar{y}_* such that local solution $(\rho(\cdot; \bar{y}_*), \omega(\cdot; \bar{y}_*))$ extends smoothly to y = 0. Look for solution with

$$\frac{4}{3} - \gamma \leq \omega(\mathbf{y}; \bar{\mathbf{y}}_*) < 2 - \gamma, \qquad \lim_{\mathbf{y} \to \mathbf{0}} \omega(\mathbf{y}; \bar{\mathbf{y}}_*) = \frac{4}{3} - \gamma.$$

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● のへで

<u>m</u>

≜UCL

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つへつ

Linear Stability

- Appropriate self-similar coordinates;
- Non-self-adjoint problem (complex eigenvalues);
- Sonic degeneracy and issues with dissipativity (monotonicity).

≜UCL

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つへつ

Linear Stability

- Appropriate self-similar coordinates;
- Non-self-adjoint problem (complex eigenvalues);
- Sonic degeneracy and issues with dissipativity (monotonicity).

Future directions

- Non-linear stability;
- Einstein-Euler (relativistic self-similar fluid implosion) and its stability (cf. Guo–Hadžić–Jang '21).
- Continuation and expansion?

Thank you!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆