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• Self-propelled elongated rods (𝑙 × 𝑤) in 2-d media

• Move along the longer axis (direction 𝑒 𝜃 ∈ 𝑆2 and speed 𝑣)

• Nematic alignment on collisions (timescale of alignment 𝑙/𝑣):

(b) type II binary alignment (asymmetric)(a) type I binary alignment (symmetric) 

𝑣𝑒(𝜃)

𝑥

Models of Myxobacteria Motion

𝑅2

• Reversals and tumbled motion

• Chemotaxis and slime following



Phenomenological Models of Multi-Cell Alignment (Vicsek-type models)

𝑖

• 𝛾 − strength of alignment, 𝑙 − interaction radius

𝑗

• Alignment to the local mean director: 

𝑒2𝑖Θ(𝑥,𝑡) =
σ
𝑗: 𝑥𝑖−𝑥𝑗 <𝑙

𝑒
2𝑖𝜃𝑗

σ
𝑗: 𝑥𝑖−𝑥𝑗 <𝑙

𝑒
2𝑖𝜃𝑗

,

𝑑𝜃𝑖
𝑑𝑡

= 𝛾sin(2 Θ − 𝜃𝑖 )

mean director

• References
Peruani Deutch Bar A mean field theory for self-propelled particles interacting by velocity alignment mechanism 
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Phenomenological Models of Multi-Cell Alignment (Vicsek-type models)

𝑖

• Interaction potential for pair of cells: 

𝑈 𝜃𝑖 , 𝜃𝑗 = −𝑐𝑜𝑠2(𝜃𝑗 − 𝜃𝑖)

• Aggregated potential:        σ𝑗: 𝑥𝑖−𝑥𝑗 <𝑙
𝑈 𝜃𝑖 , 𝜃𝑗

• Alignment along the gradient of the aggregated potential:

𝑑𝜃𝑖

𝑑𝑡
= −𝛾σ𝑗: 𝑥𝑖−𝑥𝑗 <𝑙

∇𝑈 𝜃𝑖 , 𝜃𝑗 = 𝛾σ𝑗: 𝑥𝑖−𝑥𝑗 <𝑙
sin(2 𝜃𝑗 − 𝜃𝑖 )

• Equivalent to the mean director model with  𝛾 = 𝛾|σ𝑗: 𝑥𝑖−𝑥𝑗 <𝑙
𝑒2𝑖𝜃𝑗|

𝑗

• Mean-field model of alignment in liquid crystals (Maier-Saupe theory)



• Peruani-Deutch-Bar EPJ 2008 A mean field theory for self-propelled 
particles interacting by velocity alignment mechanism

Phenomenological Models of Multi-Cell Alignment

• LC-model: N point particles 𝑥𝑖 , 𝜃𝑖 , each moving with velocity 𝑣𝑒 𝜃𝑖 and orientation 
angles changes according to some averaging rule:

𝑑𝑥𝑖
𝑑𝑡

= 𝑣𝑒(𝜃𝑖)

𝑑𝜃𝑖
𝑑𝑡

= 𝛾 ෍

𝑗: 𝑥𝑖−𝑥𝑗 <𝑙

sin(2 𝜃𝑗 − 𝜃𝑖 ) + noise



• Fokker-Planck equation for the density of cells (f) in the in the phase 
space 𝑥, 𝜃

Phenomenological Models of Multi-Cell Alignment

• Application: phase transition to an aligned state (order parameter S ,  𝜂 = diffusivity/density) 
parameter. 

From Peruani-Deutch-Bar EPJ 2008

Can LC-model for myxobacteria alignment be derived from a model  based on binary collisions?



• f(x,v,t) – density of distribution of hard spheres in 
(x,v) space

• Nondimensional Boltzmann equation

Boltzmann Equation for Rarefied Gas

𝜕𝑡𝑓 + 𝑣 ∙ 𝛻𝑓 =
𝑁𝑙2

𝐿2
𝑄 𝑓, 𝑓 + 𝑂

𝑁𝑙3

𝐿3

N – number of spheres
l – radius
L – macroscopic length
T – macroscopic time
v = L/T – macroscopic 

speed

Air at 25 deg C, 1 atm, L=1m
𝑁𝑙2

𝐿2
≈ 107

𝑁𝑙3

𝐿3
≈ 10−3

• Q(f,f) – Boltzmann operator (leading term of the collision
operator)

• Inverse of Knudsen number: 𝐾𝑛−1 =
𝑁𝑙2

𝐿2
=

𝐿

𝑑
,  d – mean free path,

•
𝑁𝑙3

𝐿3
=

𝑙

𝑑

• Assumptions leading to the Boltzmann equation: large N, small l/L, small l/d,  binary collisions,
independence of two particle distribution (molecular chaos)



• Boltzmann equation :        

𝜕𝑡𝑓 + 𝑣 ∙ 𝛻𝑓 =
𝑁𝑙2

𝐿2
𝑄 𝑓, 𝑓

• Short mean-free-path limit:               
𝑁𝑙2

𝐿2
→ ∞

• Equilibria are solutions of Q(f,f)=0. Equilibrium densities are Maxwellians

𝑓(𝑥, 𝑣, 𝑡) =
𝜌(𝑥, 𝑡)

(2𝜋𝑇(𝑥, 𝑡))3/2
𝑒
−
|𝑣−𝑢(𝑥,𝑡)|2

2𝑇(𝑥,𝑡)

• Collisions preserve number of particles, momentum and energy (3 moments of Q(f,,f) are 
zeros)

• Euler equations of Gas Dynamics for 𝜌 𝑥, 𝑡 , 𝑢 𝑥, 𝑡 , 𝑇 𝑥, 𝑡

Boltzmann Equation for Rarefied Gas



• Bertin/Droz/Gregoire Boltzmann and hydrodynamic description for self-propelled particles 
Phys Rev E   2018)

• Hittmeir/Kanzler/Manhart/Schmeiser Kinetic modeling of colonies of Myxobacteria KRM 
2022)

Boltzmann-type models for self-propelled rods



• Kinetic equation

𝜕𝑡𝑓 + 𝑒 𝜃 ∙ 𝛻𝑓 =
𝑁𝑙

𝐿
𝑄𝑎𝑙 𝑓, 𝑓 + 𝑄𝑟𝑒𝑣 𝑓, 𝑓 + 𝑂

𝑁𝑙2

𝐿2

• Limit of   N → ∞,
𝑙

𝐿
→ 0,

𝑁𝑙

𝐿
→ ∞ and  

𝑁𝑙2

𝐿2
→ 0

• Equilibrium: 𝑄𝑎𝑙 𝑓, 𝑓 + 𝑄𝑟𝑒𝑣 𝑓, 𝑓 = 0

⟺ 𝑓𝑒𝑞 𝑥, 𝜃, 𝑡 = 𝜌+(𝑥, 𝑡)𝛿 𝜃 − 𝜃+ 𝑥, 𝑡 +
𝜌−(𝑥, 𝑡)𝛿(𝜃 − 𝜃+(𝑥, 𝑡) − 𝜋)

Kinetic modeling of colonies of Myxobacteria  (Hittmeir/Kanzler/Manhart/Schmeiser KRM 2022)

• Number of cells and total (sum) angle are 
preserved in collisions

• Assumptions
1. Binary collisions
2. Two-particle independence                     

• Cells are thin rods of length l with orientation 
𝑒 𝜃 (unit vector) moving with velocity 
𝑣𝑒 𝜃

• Co-oriented collisions (angle between 𝑒 𝜃

and 𝑒 𝜃1 is less than 
𝜋

2

ҧ𝜃

• Anti-oriented collisions (angle between 

𝑒(𝜃) and 𝑒(𝜃1) is more than 
𝜋

2

𝜃

𝜃1

𝜃+𝜋

𝜃1 + 𝜋



• Collision and Reversal operators

Kinetic modeling of colonies of Myxobacteria (Hittmeir/Kanzler/Manhart/Schmeiser KRM 2022)



Kinetic modeling of colonies of Myxobacteria (Hittmeir/Kanzler/Manhart/Schmeiser KRM 2022)

• Orientation groups, 𝑆+, 𝑆−, are 
invariant in transport and collisions

• Number of cells in each group, 𝑆+, 𝑆−, is 
preserved in collisions 

• 3 conserved quantities and 3 
parameters in equilibrium density                     

• Two-group orientation geometry is 
invariant under collisions

Hyperbolic system of PDEs

• Applications: 
existence/uniqueness/convergence to 
equilibrium for space homogeneous eq for 
“Maxwellian cells”



Boltzmann and hydrodynamic description for self-propelled partiles (Bertin/Droz/Gregoire Phys 
Rev E   2018)

• Two point particles moving with velocities 𝑣𝑒 𝜃 and 
𝑣𝑒(𝜃1) interact when distance between particles  < l

• New orientations 

𝜂, 𝜂1- independent Gaussians (noise)

𝑒(𝜃)
𝑒(𝜃1)

𝑙

• Diffusion: random adjustments to orientation as a 

Poisson process with frequency 𝜆: መ𝜃 = 𝜃 + 𝜂𝑑

• Binary collisions, Two-particle independence, N → ∞,
𝑙

𝐿
→ 0,

𝜆𝐿

𝑣
≈ 1,

𝑁𝑙

𝐿
≈ 1 and    

𝑁𝑙2

𝐿2
→ 0

𝜕𝑡𝑓 + 𝑒 𝜃 ∙ 𝛻𝑓 = 𝑄𝑑𝑖𝑓𝑓 𝑓, 𝑓 + 𝑄𝑎𝑙 𝑓, 𝑓

Macroscopic parameters: density 𝜌 and 
momentum 𝑤



Boltzmann and hydrodynamic description for self-propelled partiles (Bertin/Droz/Gregoire  Phys 
Rev E  2018)

• Asymptotic regime of small macroscopic velocity:

𝜌 ≈ 𝑂 1 , 𝑤 = 𝜀, |𝑓𝑘| ≈ 𝑂 𝜀− 𝑘 , 𝜀 ≪ 1

• Conservation of number of cells in collisions

𝜕𝑡𝜌 + 𝛻 ∙ 𝑤 = 0

• First moment

• Fourier modes 𝑓 = σ𝑓𝑘𝑒
𝑖𝑘𝜃 with  

𝑓0 ≈ 𝜌, 𝑓1 ≈ 𝑤

Limiting macroscopic equations

• Application: stability of homogeneous state

𝜕𝑡𝑤 = 𝜇 − 𝜉𝑤 ∙ 𝑤 𝑤

If 𝜇 < 0, the only steady state w=0 (stable)

if 𝜇 > 0, non-zero steady states 𝑤 =
𝜇

𝜉
𝑒(𝜃)



A mean-field model for nematic alignment of self-propelled rods  (MP/Murphy/Igoshing/Timofeyev
to appear in  Phys Rev E  2022)

• Symmetric alignment in binary collisions

• 𝛿 − small parameter

• Geometry of interactions in time Δ𝑡

𝜃
𝜃1

• Area of interaction parallelograms:

𝑙𝑣Δ𝑡|sin (𝜃 − 𝜃1)|

𝜃

𝜃1

𝑣Δ𝑡(𝑒 𝜃 − 𝑒 𝜃1 )

𝑙𝑒(𝜃)

𝜃 𝜃1

• Assumptions: binary collisions, two-particle 
independence



A mean-field model for nematic alignment of self-propelled rods 

• Balance of probability + Scaling + Asymptotic expansion:

• 𝛿 ≪ 1,
𝑙

𝐿
≪ 1, N ≫ 1

•
𝑁𝑙𝛿

𝐿
= 𝛿

𝑁

𝐿2
𝑙𝐿 = 1: (amount of alignment per collision)x(cell 

density)x(“interaction area” over characteristic distance L)=(amount 
of alignment per collision)x( # of collisions over characteristic 
distance L)=1

• Large number of collisions over characteristic distance L
• Conclusion: Liquid crystal model of myxocell alignment can be 

derived on the basis of purely collisional model, in the limit of the 
zero interaction distance and large number of cells 

• Application: phase transition to an aligned state



Pre-collision: Post-collision:

Asymmetric Alignment

𝜃 + 𝜋

𝜃1

• Initial set of orientations and their reflections is 
preserved in collisions and transport

• Assumptions:
1. Binary collisions
2. Two-particle independence  

3.
𝑁𝑙

𝐿
≫ 1,

𝑁𝑙2

𝐿2
≈ 1

Mechanical interactions between two cells during 
head-to-side collision. From Balagam et al. PLOS 
Comp. Bio. 2014.

Kinetic equation

𝜕𝑡𝑓 + 𝑒 𝜃 ∙ 𝛻𝑓 =
𝑁𝑙

𝐿
𝑄𝑜 𝑓, 𝑓 +

𝑁𝑙2

𝐿2
𝑄1(𝑓, 𝑓)

Physical range:    
𝑁𝑙𝑤

𝐿2
< 1

Length (l) = 3μm, width (w) = 0.5μm:        
𝑁𝑙2

𝐿2
< 6

N = 1,000-10,000 L = 500μm
𝑁𝑙

𝐿
= 6. . 60

𝑁𝑙2

𝐿2
= 0.036. . 0.36



Interaction Operators

• Asymmetry (key property): 𝑄0 𝑓, 𝑓 𝑥, 𝜃 + 𝜋, 𝑡 = −𝑄0(𝑓, 𝑓)(𝑥, 𝜃, 𝑡)

• Equilibria: 𝑄0 𝑓, 𝑓 = 0

• One co-oriented group: 
𝑓 𝑥, 𝜃, 𝑡 supported on 𝑆+

𝑆+

𝑆−

• Two co-oriented groups:

𝑓 𝑥, 𝜃, 𝑡 = ቊ
𝑓+ 𝑥, 𝜃, 𝑡 , 𝜃 ∈ 𝑆+
𝜆 𝑥, 𝑡 𝑓+ 𝑥, 𝜃 + 𝜋 , 𝜃 ∈ 𝑆−

(the only equilibrium for two nematic
orientations)



Singular Limit and Macroscopic Equations

Limit of N → ∞,
l

L
→ 0,

Nl

L
→ ∞, and     

Nl2

L2
≈ 1

• Implications: 
1. 𝑄0 𝑓, 𝑓 → 0
2. If initial data are nematically co-oriented then so is 𝑓 𝑥, 𝜃, 𝑡 for any 𝑥, 𝑡
3. Assuming finite set of  m initial orientations 𝜃1, … , 𝜃𝑚,

𝑓 𝑥, 𝜃, 𝑡 = ෍

𝑘

𝜌𝑘 𝑥, 𝑡 𝛿 𝜃 − 𝜃𝑘 + 𝜆(𝑥, 𝑡)𝜌𝑘 𝑥, 𝑡 𝛿 𝜃 − 𝜃𝑘 − 𝜋

(m+1) macroscopic parameters

• Equations:
1. conservation of total number of cells 
2. m asymmetry conditions



Examples of Macroscopic Equations

• One co-oriented group with two angles  𝜃1, 𝜃2:

• Two nematically co-oriented group with two angles:

• Hyperbolic system of PDES



ABM and PDE simulations

• Two orientations  𝜃1, 𝜃2, N=4000 cells, square domain of side L=400𝜇𝑚, 
average over 1000 simulations

Gaussian bands

Uniform bands

initial bands
right moving ABM
left moving ABM
right moving PDE
left moving PDE



ABM and PDE simulations

• Interaction of uniform bands
• ABM (solid line) vs. PDE (dotted line)



Numerical solution of PDE model (Lax-Friedrichs scheme)

• Interaction of uniform bands (numerical solution of PDEs)

• Wave structure in the interaction of two uniform bands

𝑥

𝑡

shock

(degenerate) shock
r-wave



Further Comments

I.  Summary 
• Boltzmann-type PDE model gives reasonable qualitative approximation of agent-

base dynamics
• Higher order terms in the Boltzmann equation must be accounted for 

II. Difficulties
• PDEs are generically non-conservative
• Agent-based dynamics exhibit growth of correlations (clustering due to short mean-

free path)
• Two-particle independence hypothesis is violated in a long run
• Boltzmann-type PDE model is valid in transient regimes

III. Future Work
• Different closures for the kinetic function (f)
• Models with Reversals and Refraction period
• Different geometries  of alignment (for ex. turning trough the head of a cell) 


