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Hydrodynamic Limit for Interacting Diffusions

T. Funaki, H. Spohn Motion by mean curvature from the Ginzburg-Landau
interface model. CMP, 185(1) (1997), pp. 1-36.

dbi(x) =— > V/(di(x) — di(y))dt + V20Bi(x) for x € A C Z°.

[x=yli=1

The fields @ live on a discrete lattice and take values in RY, By(x) are i.i.d.
Brownian motions, V' is the derivative of a strictly convex symmetric function,
and | - |4 is the L'—norm. (V(x) = }|x|?: Laplace)
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Introduction

dbi(x)=— > V/(di(x) — bi(y))dt + V2dBi(x) for x € A C Z°.
[x—yl1=1
Funaki-Spohn 1999 NONLINEAR
(r, 1) = ed —24(x) for re[x—e/2,x+¢/2)? with N =[]

under diffusive rescaling onvergence to the solution h of

h(r, 1) = div((Do)(V h))

(Hydrodynamic limit)
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Invariant Measure and limit

Invariant measure on finite lattice: (V;® : Discrete gradients.)
%eﬁ Tren V(Vi0() XE\ do(x).

Limit points as A — Z9 : DLR states (Dobrushin-Lanford-Ruelle)
Funaki-Spohn: Unique DLR state up for each "ilt" P : V(y + P)), periodic b.c.
by coupling and "PDE methods"

Technique for limit: Local equilibrium states (Guo, Papanicolaou Varadhan):
- macroscopic quantity P ~ V h varies slowly on microscale.

- near e~ 'x, process in law close to invariant measure HP(x)-

- replace nonlinearities by expectation under jip(y)

-1, stationary (up to tilt) and ergodic

See book by Kipnis and Landim

Important fact: For d = 1,2 no invariant measure for fields ¢ exists, only for
discrete gradients V;®.
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What about scaling SPDEs?

X—k

aUf = divA(DUE, )dBf in RY x (0, +00),

Us = uw. in RY
(B¥)keze ii.d. BM, A stat. ergodic in space-time (Z9), ind. of BM’s, A(x)
smooth, compact support.

Note: Similar to Funaki-Spohn, but different model. (Scale of correlation vs.
scale of discretization)

AIM: Use homogenization techniques
Scaled (linear) SPDEs:

A. Dunlap, Y. Gu, L. Rhyzik and O. Zeitouni
M. Hairer, E. Pardoux, A. Piatnitski

Here: Nonlinear (divergence form)
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Scaling limit for SPDE by homogenization techniques

Homogenization:

Law of microstructure fixed, stationary ergodic.

Scaling limits for interacting particle systems:

Self-organised ergodic structure on microscale,

changing on macroscale (local equilibrium)

invariant measure up corresponds to law of gradient corrector
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Scaling limit for SPDE by homogenization techniques

Homogenization:

Law of microstructure fixed, stationary ergodic.

Scaling limits for interacting particle systems:

Self-organised ergodic structure on microscale,

changing on macroscale (local equilibrium)

invariant measure up corresponds to law of gradient corrector
Theorem (Cardaliaguet-D.-Souganidis 2020):

Solutions of

dUs = divA(DUE, \)dt +

x t
== =f
e 2’ t (Xt)

keZd
US = U.

converge a.s. and in expectation in suitably weighted L2 spaces to unique
solutions of
— div a(Du) = f

A strictly monotone
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Strategy of Proof

€ X A/€¢
Ui(x) =€ %(;) + Wi (x),
dV; = AVdt+ ) Alx—k)dBf in RY xR, (1)
kezd
oW = div(é(DWE,g,eiz,w)) in RY x (0, +00) 2)
W§ = uw in RY,

with the random nonlinearity
a(p7 X, taw) = A(p+ DV[(X7WO)7 t7X7w1) - D\N/f(xuwo)

(Simplification under structural assumptions as in F-S)

Tasks:

1. Existence of family of eternal, stationary, attracting solns. for gradient of (1)
= DV space-time stationary ergodic

2. Homogenize nonlinear divergence form PDEs as (2) with space-time stat.
erg. coefficients with low time regularity.
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Stability considerations

1. Existence of family of eternal, stationary, attracting solns. for gradient of (1)
= DV space-time stationary ergodic

2. Homogenize nonlinear divergence form PDEs as (2) with space-time stat.
erg. coefficients with low time regularity

PV

— C%‘ L’('/’/ Slr',(.
— Soltroe

_ T = = {W/ axs: '([V” ‘[0"’5/9”{
P ~~7Y—~—u— S
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Heat Equation

Heat Equation
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Eternal solution for heat equation with additive noise

Space time stationary solutions for

dVi = AVidt+ > A(x — k)dBf.

kezd
via
dVi = AVidt+ Y A(x—Kk)dBf on[-r? c0) x R”
kezd
V_pe(x) = 0
and n — oo.

A(x) smooth and compact support
- moment bounds
- correlation decay

- convergence as n — oo
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Moment Bounds

1 if d > 3,
E[|Vi(x)[?] < CtA{ In(t+1) ifd=2,

t'/2 ifd=1.
sup E[|DV:(x)[?] + E[| D? Vi(x)[?] < C(t A 1),

xeRd

Method: Heat kernel and Ito formula

Space-time stationary limit expected only for gradients!
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Decorrelation

For /e Z and R > 1, let V/:F be the solution to

AV = AV Rdt+ 3y 0 w_<p AlX — k)dBE in RY x (0, +00),
Vyf =0 in R
(Switch off noise outside Bg(/))

R—¢ if B2/t <1,
exp{—R?/(5t)} otherwise,

)

E [|Dv,(0) - DV,O’R(O)\Z} < c{

Note Z¢ invariance in space.

Note: V-F and V2 are independent if |l — k| > R.
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Convergence

v = AV + > A(x—k)dBf on[-n? 00) x R"
kezd
V7 a(x) = 0

(DV")nen is Cauchy sequence in L2(B, x [T, T] x Q) for any fixed r and T.

Method: Suppose m <« n.

V" — V™ solves deterministic heat equation.

Solution is heat kernel applied to difference in initial values at time —m?, i.e. to
vno,.

Hegt kernel: "Averaging"

Replace V by V'#, use m,n>> 1. (Recall E [|Dv,(0) - DV,O’R(O)\Z} < CR9)

Attractor Similar principle: Difference of two solutions satisfies deterministic
heat equation. Use gradient estimate by averaging for heat equation
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Self-organized ergodicity and stability

Lemma
1. There exists a unique process Z : Qp x R x R — R (eternal solution) with

E [ / |Zt(x)|2dxdt} <o, 0Zi(x) = AZ(x)dt+ Y DyA(x — k)dBE.
@ kezd

2. Zis an attractor in the sense that, if V is a solution of stoch. heat eq. in
RY x (0, 00) such that V(-,0) = 0, then

lim E Ua |th(x)—z,(x)|2dx] =0.

t—+oco

3. Higher dimensions: For d > 3, there exists a unique up to constants
space-time stationary adapted process V : Q x R? x R — R solving the stoch.

heateq. in RY x Rs.t. E [ Ja, |vt(x)|2dxdt] < .
Consequence:
a(p, x, t,w) = A(p + DVy(x,wo), t, X,wi) — DV(x, wo)

stationary ergodic w.r.t R x Z9.
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Nonlinear divergence form

Nonlinear divergence form
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Qualitative homogenization for nonlinear divergence
form parabolic PDE

ui —diva (DUE, g, ;,w) =f in RY x (0,00) u(+,0) = wp,

a: R x RY x R x Q — R is strongly monotone, Lipschitz continuous and
space-time stationary and ergodic with respect to Z4 x R-action.

Main result: Theorem on existence of corrector. (Cardaliaguet-D.-Souganidis
2020) For each P in R there ex. x"(x, t,w) s.t.

/@ WP(x. tw)dxdt =0 P-as., DyPe L2y, " e Hy",

d-x" —div(a(P + DxP,y,7,w)) =0 in RI*1,
x t

z,g,(&)) — 0

ex”(
in 2 (R9+"), P—a.s. and in expectation. (Parabolic Sublinearity)
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Effective Nonlinearity

us — diva <Duf, g, ;,w> =fin RYx (0,00) u(-,0) = up,

a: R x RY x R x Q — R is strongly monotone, Lipschitz continuous and
space-time stationary and ergodic with respect to Z¢ x R-action.

d-x" — div(a(P + DxP,y,7,w)) =0 in RI*T,

Effective nonlinearity

ap) = E [ |, alp+ Dy w)dydr
Q

is monotone and Lipschitz continuous.
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Qualitative homogenization for nonlinear divergence
form parabolic PDE: Related work

ui —diva (Due, g, ;,w> =fin R x (0,00) u(-,0) = up,
a:RI x RY x R x Q — R is strongly monotone, Lipschitz continuous and
space-time stationary and ergodic with respect to Z9 x R-action.
Related work:

e Efendiev and Panov

¢ Efendiev, Jiang and Pankov

¢ Zhikov, Kozlov and Oleinik

e Landim, Olla and Yau

e Fannjiang and Komorowski

e Komorowski and Olla

e Rhodes

e Delarue and Rhodes

e Lin, Smart and Lin

e Armstrong, Bordas and Mourrat
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Existence of corrector: Strategy

Space-time cube QL (finite domain), regularize with A\ > 0.
AU — AOyuy + dgup — div(a(Dup + p,w)) =0 in @ u. =0 in 0Qy.
A-priori estimates independent of L lead to existence of
MM — N MP + O MP — div(a(Dx* P + p,w)) = 0 in R+,

Estimates uniform in A for 9;x*P in H=' and Dy in L2,
Use monotonicity of nonlinearity and lemmas on reconstruction of stationary
functions from derivatives.
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Lemmas on vector fields
0 € He', w e L2 satisfy for i =1,...d,
(0, 0x,0 1wy = E [Wi0rd]
Then there exists a measurable map v : R9*! x Q — R such that Du = w and

c’%u =40
If in addition ¢ € L2 satisfies

6 —div(€) =0 in H',
E [/ w- {} =0.
Q
Heuristics

/é1 Du.f/é1 ——/éwu-diV(ﬁ)——/é1 udiu = — aat(;uz).
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Further ingredients

Lemma for sublinearity P—a.s. and in expectation,

lim R*(d+3)/ lu(x, t)|?dxdt = lim Fr(d“)/
fo) R— o0

R— o0 fo)

Equivalent: uc(x,t,w) = eu(x/e, t/e,w).
Iim/ \u(x, t)|?dxdt = 0.
e—0/¢

Technical Difficulties:
Time derivative only in H=', ergodicity along lines (Lemma by
Kosygina-Varadhan)

Homogenization: For perturbed test function method, approximate gradient of
test function by piecewise constant function
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Summary

Cardaliaguet-D.-Souganidis 2020
Result 1 (Scaling limit of SPDE by homogenization techniques)

Dt + 1 =3 A X= k)dB":f(x t),

keZd

aqUs = dlv.A(DU,767

27

converge a.s. and in expectation in suitably weighted L2 spaces to unique
solutions of

— div a(Du) = f
Result 2 (Homogenization/correctors)

Problem uf — diva (D

E

t ,
)W ):fm RY x (0, o0)

Corrector 0, x" — div(a(P + Dx",y,7,w)) =0 in R,
Effective nonlinearity

a(p) =E [ / a(p+DxP.y,, w)dydr}
Q
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Outlook

dt+ ;= f(x, 1),

27

a:Us = dlvA(DU,, e’

keZd
Scaling Limits and Stochastic Homogenization for some Nonlinear Parabolic

Equations. P. Cardaliaguet, N. Dirr and P. E. Souganidis
arxiv:2004.03857

e Precise connection with Funaki-Spohn

e More degenerate operators (MCF approach by v. Renesse, Es-Sarhir)
e Multiplicative noise

¢ Allen-Cahn type problems

e Kac-type interactions and dynamic Lebowitz-Penrose limit

Thank you for your attention!
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