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Trinity Term 2023

October 26, 2023

Part I

A. STATISTICS

• Numbers and percentages in each class.
See Table 1.

Table 1: Numbers in each class

Range Numbers Percentages %
2023 (2022) (2021) (2020) (2019) 2023 (2022) (2021) (2020) (2019)

70–100 44 (59) (53) 4(3) (57) 30.77 (36.65) (37.32) (32.58) (35.19)
60–69 67 (71) (57) (65) (71) 46.85 (44.1) (40.14) (49.24) (43.83)
50–59 25 (22) (29) (21) (27) 17.48 (13.66) (20.42) (15.91) (16.67)
40–49 4 (6) (2) (3) (5) 2.8 (3.73) (1.41) (2.27) (3.09)
30–39 1 (2) (0) (0) (1) 0.7 (1.24) (0) (0) (0.62)
0–29 2 (1) (1) (0) (1) 1.4 (0.62) (0.7) (0) (0.62)

Total 143 (161) (142) (132) (162) 100 (100) 9(100) (100) (100)

• Numbers of vivas and effects of vivas on classes of result.
Not applicable.

• Marking of scripts.
All scripts were single marked according to a pre-agreed marking scheme which was
strictly adhered to. The raw marks for paper A2 are out of 100, and for the other
papers out of 50. For details of the extensive checking process, see Part II, Section A.

• Numbers taking each paper.
All 143 candidates are required to offer the core papers A0, A1, A2 and ASO, and five
of the optional papers A3-A11. Five candidates took six long options. Statistics for
these papers are shown in Table 2 on page 2.
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Table 2: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

A0 142 35.2 10.05 65.92 12.18
A1 143 33.41 10.05 66.4 14.8
A2 143 61.57 14.94 65.6 9.87
A3 67 29.73 9.86 65.31 14.04
A4 129 28.46 10.94 65.12 15.27
A5 83 29.66 9.6 64.59 14.15
A6 89 32.08 9.85 65.91 10.88
A7 61 28.34 10.17 64.1 15.31
A8 131 28.83 8.15 65.66 12.21
A9 70 34.09 10.38 66.67 14.08
A10 36 32.64 7.48 64.64 10.02
A11 49 25.45 12.01 62.82 12.67
ASO 142 32.46 9.01 67.09 13.2

B. New examining methods and procedures

None.

C. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

None.

D. Notice of examination conventions for candidates

The first notice to candidates was issued on the 21st February 2023 and the second notice on
the 18th May 2023.

These can be found at https://www.maths.ox.ac.uk/members/students/

undergraduate-courses/ba-master-mathematics/examinations-assessments/

examination-20, and contain details of the examinations and assessments. The course
handbook contains the link to the full examination conventions and all candidates are
issued with this at induction in their first year. All notices and examination conventions
are online at https://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments/examination-conventions.
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Part II

A. General Comments on the Examination
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• Haleigh Bellamy for her work in supporting the Part A examinations throughout the
year, and for her help with various enquiries throughout the year.

• Waldemar Schlackow for running the database and the algorithms that generate the
final marks, without which the process could not operate.

• Clare Sheppard and Charlotte Turner-Smith for their help and support, together with
the Academic Administration Team, with marks entry, script checking, and much vital
behind-the-scenes work.

• The assessors who set their questions promptly, provided clear model solutions, took care
with checking and marking them, and met their deadlines, thus making the examiners’
jobs that much easier.

• Several members of the Faculty who agreed to help the committee in the work of checking
the papers set by the assessors.

• The internal examiners and assessors would like to thank the external examiners, Prof
Neil Strickland and Prof John Billingham, for helpful feedback and much hard work
throughout the year, and for the important work they did in Oxford in examining
scripts and contributing to the decisions of the committee.

Timetable

The examinations began on Monday 12th June and ended on Friday 23rd June.

Mitigating Circumstances Notices to Examiners

A subset of the examiners (the ‘Mitigating Circumstances Panel’) attended a pre-board meet-
ing to band the seriousness of the individual notices to examiners. The outcome of this meeting
was relayed to the Examiners at the final exam board, who gave careful regard to each case,
scrutinised the relevant candidates’ marks and agreed actions as appropriate.

B. Strike Action

The marking boycott affected the marking of the papers A4 Integration and A5 Topology.
Alternative markers were found for A4 Integration, and the completed raw marks for A5
Topology and the scripts were returned on the morning of the final board meeting. The A5
Topology examination scripts were checked and the marks imported after the final board,
and the scaling for the marks agreed via confidential correspondence. The A5 marks were
released alongside the rest of the Part A results.

Setting and checking of papers and marks processing

As is usual practice, questions for the core papers A0, A1 and A2, were set by the examiners
and also marked by them with the assistance of assessors. The papers A3-A11, as well as
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each individual question on ASO, were set and marked by the course lecturers/assessors.
The setters produced model answers and marking schemes led by instructions from Teaching
Committee in order to minimize the need for recalibration.

The internal examiners met in December to consider the questions for Michaelmas Term
courses (A0, A1, A2 and A11). The course lecturers for the core papers were invited to
comment on the notation used and more generally on the appropriateness of the questions.
Corrections and modifications were agreed by the internal examiners and the revised questions
were sent to the external examiners.

In a second meeting the internal examiners discussed the comments of the external examiners
and made further adjustments before finalising the questions. The same cycle was repeated in
Hilary term for the Hilary term long option courses and at the end of Hilary and beginning of
Trinity term for the short option courses. Papers A8 and A9 are prepared by the Department
of Statistics and jointly considered in Trinity term. Before questions were submitted to
the Examination Schools, setters were required to sign off on a camera-ready copy of their
questions.

The whole process of setting and checking the papers was managed digitally on SharePoint.
Examiners adopted specific and detailed conventions to help with version checking and record
keeping.

Examination scripts were collected by the markers from Exam Schools or delivered to the
Mathematical Institute for collection by the markers and returned there after marking. A
team of graduate checkers under the supervision of Haleigh Bellamy and Charlotte Turner-
Smith sorted all the scripts for each paper, cross-checking against the mark scheme to spot
any unmarked questions or part of questions, addition errors or wrongly recorded marks.
Also sub-totals for each part were checked against the marks scheme, noting any incorrect
addition.

Determination of University Standardised Marks

The examiners followed the standard procedure for converting raw marks to University Stan-
dardized Marks (USM). The raw marks are totals of marks on each question, the USMs are
statements of the quality of marks on a standard scale. The Part A examination is not clas-
sified but notionally 70 corresponds to ‘first class’, 50 to ‘second class’ and 40 to ‘third class’.
In order to map the raw marks to USMs in a way that respects the qualitative descriptors of
each class the standard procedure has been to use a piecewise linear map. It starts from the
assumption that the majority of scripts for a paper will fall in the USM range 57-72, which
is just below the II(i)/II(ii) borderline and just above the I/II(i) borderline respectively. In
this range the map is taken to have a constant gradient and is determined by the corners C1

and C2, which encode the raw marks corresponding to a USM of 72 and 57 respectively. The
guidance requires that the examiners should use the entire range of USMs. Our procedure
interpolates the map linearly from C1 to (M, 100) where M is the maximum possible raw
mark. In order to allow for judging the position of the II(i)/III borderline on each paper,
which corresponds to a USM of 40, the map is interpolated linearly between C3 and C2 and
then again between (0, 0) and C3. Thus, the conversion of raw marks to USMs is fixed by
the choice of the three corners C1, C2 and C3. While the default y-values for these corners
were given above and are not on the class borderlines, the examiners may opt to change those
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default values, e.g., to avoid distorting marks around class boundaries. The final choice of
the scaling parameters is made by the examiners, guided by the advice from the Teaching
Committee, considering the distribution of the raw marks and examining individuals on each
paper around the borderlines.

The final resulting values of the parameters that the examiners chose are listed in Table 3.

Table 3: Parameter Values
Paper C1 C2 C3

A0 (46.2,72) (22.2,57) (12.75,37)
A1 (42.6,72) (23.1,57) (13.27,37)
A2 (75.2,72) (43.7,57) (25.10,37)
A3 (38.6,72) (19.1,57) (10.97,37)
A4 (37.8,72) (16.8,57) (9.65,37)
A5 (37.2,72) (20.7,57) (11.89,37)
A6 (42,72) (19.5,57) (11.20,37)
A7 (37.4,72) (19.4,57) (11.14,37)
A8 (35,72) (20,57) (11.49,37)
A9 (44,72) (21.5,57) (12.35,37)
A10 (40,72) (25,57) (14.36,37)
A11 (39.2,72) (19,60) (4.42,37)
ASO (39.2,72) (22.7,57) (13.04,37)

Table 4 gives the resulting final rank and percentage of candidates with this overall average
USM (or greater).
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Table 4: Rank and percentage of candidates with this overall
average USM (or greater)

Av USM Rank Candidates with this USM or above %

90.4 1 1 0.7
89.5 2 2 1.4
84.85 3 3 2.1
84.3 4 4 2.8
83.9 5 5 3.5
82.8 6 6 4.2
82.7 7 7 4.9
82.5 8 8 5.59
82.3 9 9 6.29
81.7 10 10 6.99
81.5 11 11 7.69
81.3 12 12 8.39
80.8 13 13 9.09
79.4 14 14 9.79
79.2 15 15 10.49
79.1 16 16 11.19
78.9 17 17 11.89
77.8 18 19 13.29
77.8 18 19 13.29
77.4 20 20 13.99
76.8 21 21 14.69
76.6 22 22 15.38
76 23 23 16.08

75.8 24 24 16.78
75.65 25 25 17.48
75.6 26 26 18.18
75.4 27 27 18.88
74.5 28 28 19.58
73.8 29 29 20.28
73.5 30 30 20.98
73.3 31 31 21.68
73 32 32 22.38

72.7 33 33 23.08
72.6 34 34 23.78
72.5 35 35 24.48
72.1 36 36 25.17
71.5 37 37 25.87
71 38 38 26.57

70.6 39 40 27.97
70.6 39 40 27.97
70.4 41 41 28.67
70.1 42 42 29.37
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Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

Av USM Rank Candidates with this USM or above %

69.9 43 43 30.07
69.5 44 44 30.77
69.45 45 45 31.47
69.1 46 46 32.17
68.9 47 47 32.87
68.8 48 48 33.57
68.5 49 50 34.97
68.5 49 50 34.97
68.4 51 51 35.66
68.3 52 52 36.36
68.2 53 53 37.06
68.1 54 57 39.86
68.1 54 57 39.86
68.1 54 57 39.86
68.1 54 57 39.86
68 58 58 40.56

67.6 59 59 41.26
67.3 60 62 43.36
67.3 60 62 43.36
67.3 60 62 43.36
67.2 63 63 44.06
67.1 64 64 44.76
66.9 65 65 45.45
66.6 66 68 47.55
66.6 66 68 47.55
66.6 66 68 47.55
66.5 69 69 48.25
66.2 70 70 48.95
66.1 71 71 49.65
65.9 72 72 50.35
65.7 73 74 51.75
65.7 73 74 51.75
65.4 75 75 52.45
65.2 76 78 54.55
65.2 76 78 54.55
65.2 76 78 54.55
65.1 79 79 55.24
64.85 80 80 55.94
64.7 81 81 56.64
64.6 82 82 57.34
64.5 83 83 58.04
64.3 84 84 58.74
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Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

Av USM Rank Candidates with this USM or above %

64.1 85 85 59.44
64 86 86 60.14

63.9 87 87 60.84
63.8 88 88 61.54
63.7 89 89 62.24
63.2 90 90 62.94
63.1 91 92 64.34
63.1 91 92 64.34
62.8 93 93 65.03
62.6 94 94 65.73
62 95 96 67.13
62 95 96 67.13

61.8 97 99 69.23
61.8 97 99 69.23
61.8 97 99 69.23
61.7 100 100 69.93
61.5 101 101 70.63
61.4 102 102 71.33
61.1 103 103 72.03
60.4 104 104 72.73
60.3 105 105 73.43
60.1 106 106 74.13
59.9 107 107 74.83
59.8 108 110 76.92
59.8 108 110 76.92
59.8 108 110 76.92
59.6 111 111 77.62
59.3 112 112 78.32
58.5 113 113 79.02
57.9 114 114 79.72
57.4 115 115 80.42
57.1 116 117 81.82
57.1 116 117 81.82
57 118 118 82.52

56.9 119 119 83.22
56.5 120 120 83.92
56.4 121 121 84.62
55 122 122 85.31

54.4 123 125 87.41
54.4 123 125 87.41
54.4 123 125 87.41
54.2 126 126 88.11
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Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

Av USM Rank Candidates with this USM or above %

54.11 127 127 88.81
53.8 128 129 90.21
53.8 128 129 90.21
53.5 130 130 90.91
53.3 131 131 91.61
51.9 132 132 92.31
51.2 133 133 93.01
50.6 134 134 93.71
50.4 135 135 94.41
50.3 136 136 95.1
46.5 137 137 95.8
45.4 138 138 96.5
45.2 139 139 97.2
40.4 140 140 97.9
34 141 141 98.6

29.1 142 142 99.3
22.57 143 143 100

Recommendations for Next Year’s Examiners and Teaching Committee

The process seemed to work well this year. To try to optimise things even further next year,
it may be helpful for the next Chair of Examiners to remind the setters of various papers to
use a consistent system of names for folders containing draft versions of exam papers, e.g.
Smith220126. This will help to minimise the risk of various changes to the papers being
overwritten in future edits.
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B. Equality and Diversity issues and breakdown of the results by gender

Table 5, page 10 shows percentages of male and female candidates for each class of the degree.

Table 5: Breakdown of results by gender
Class Number

2023 2022 2021
Female Male Total Female Male Total Female Male Total

70–100 4 40 44 7 52 59 5 48 53
60–69 19 48 67 23 48 71 21 36 57
50–59 11 14 25 8 14 22 15 14 29
40–49 3 1 4 4 2 6 1 1 2
30–39 0 1 1 0 2 2 0 0 0
0–29 2 0 2 1 0 1 0 1 1

Total 43 118 161 42 100 142

Class Percentage

2023 2022 2021
Female Male Total Female Male Total Female Male Total

70–100 10.26 38.46 30.77 11.9 48 37.32 24.39 36.26 30.32
60–69 48.72 46.15 46.85 50 36 40.14 53.66 47.25 50.45
50–59 28.21 13.46 17.48 35.71 14 20.42 17.07 15.38 16.22
40–49 7.69 0.96 2.8 2.38 1 1.41 4.88 1.1 2.99
30–39 0 0.96 0.7 0 0 0 0 0 0
0–29 5.13 0 1.4 0 1 0.7 0 0 0

Total 100 100 100 100 100 100 100 100 100

C. Detailed numbers on candidates’ performance in each part of the exam

Individual question statistics for Mathematics candidates are shown in the tables below.

Paper A0: Linear Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.24 18.43 6.14 123 2
Q2 16.06 16.24 6.62 46 1
Q3 17.33 17.4 4.54 114 2
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Paper A1: Differential Equations 1

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.4 13.49 5.87 115 2
Q2 18.4 18.4 5.29 142 0
Q3 21.24 21.93 5.99 28 1

Paper A2: Metric Spaces and Complex Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.42 16.5 3.77 103 3
Q2 15.56 15.56 5.34 109 0
Q3 9.82 10.45 4.75 67 7
Q4 14.43 14.63 5.75 109 2
Q5 17.8 17.96 4.64 116 1
Q6 15.32 15.4 5.95 67 1

Paper A3: Rings and Modules

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.44 14.52 5.09 63 1
Q2 14.69 14.98 5.58 44 1
Q3 15.07 15.48 6.96 27 1

Paper A4: Integration

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.55 11.82 6.26 90 3
Q2 14.7 14.81 5.76 124 1
Q3 17.11 17.5 6.34 44 1

Paper A5: Topology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.31 15.31 4.83 81 0
Q2 13.94 14.02 5.82 64 1
Q3 15.48 15.48 5.09 21 0

Paper A6: Differential Equations 2

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.86 18.86 4.88 88 0
Q2 12.56 12.71 6.28 49 1
Q3 12.8 14.3 6.21 40 6
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Paper A7: Numerical Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.93 12.93 6.1 55 0
Q2 15.68 16.09 5.97 58 2
Q3 9.4 9.44 6.64 9 1

Paper A8: Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.13 14.64 5.54 99 5
Q2 14.12 14.6 4.78 94 5
Q3 13.94 14.06 3.36 68 1

Paper A9: Statistics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.04 15.21 5.55 48 1
Q2 14.31 14.51 5.62 35 1
Q3 19.81 20.14 5.56 57 1

Paper A10: Fluids and Waves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.37 17.37 3.93 19 0
Q2 15.11 15.82 4.95 34 2
Q3 16.16 16.16 4.87 19 0

Paper A11: Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.69 12.87 6.87 47 1
Q2 10.13 10.38 5.27 37 1
Q3 18.43 18.43 5.11 14 0
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Paper ASO: Short Options

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.93 13.93 5.37 44 0
Q2 14.82 15.03 4.93 32 1
Q3 18.86 18.86 5.42 14 0
Q4 12.75 12.75 4.19 4 0
Q5 17.97 18.38 6.27 84 2
Q6 13.91 13.91 4.46 43 1
Q7 17.6 17.6 5.11 30 0
Q8 19.6 23.75 9.34 4 1
Q9 14.87 15 2.94 29 1

D. Comments on papers and on individual questions

The following comments were submitted by the assessors.

Core Papers

A0: Algebra 1

Question 1 Surprisingly, in part (a), (i) many students did not state the PDT correctly. Some
students implicitly assumed that the field is algebraically closed and stated the theorem under
this assumption, and other omitted important conclusions. Both of these resulted in partial
or full reduction of mark. In part (ii), the most common problem was that students wrote
the final answer implicitly without findings explicitly the requested kernels. Other mistakes
included using the imaginary unit i (or other meaningless symbols) which is meaningless in
the field of 3 elements. Calculation errors were treated with more tolerance.

In part (b), (i) almost all students defined correctly the requested notions, all though some
confused C with R. In part (ii), most students found correctly the formula, but many students
did not explain why the vectors which span U0 are linearly independent. Most students wrote
a correct proof in part (iii), and the few who did not either left a blank space or wrote an
argument which has nothing to do with the question. In part (iv) some students left a blank
space, but most did well. Some did not explain clearly enough how to deduce the lower
triangular statement from the upper one (or vice versa).

Question 2 This was the least popular question, done by a fairly small proportion of students.
Part (a)(ii) was very mildly disguised bookwork. The group of students taking the question
seemed to fall into two parts: those who had learned the bookwork (and did quite well), and
those that hadn’t but perhaps didn’t like the look of one of the other two questions (and did
not do very well). I was pleased though that those students who had studied carefully this
part of the course were able to score very highly on the question. I was amazed though by the
number of students who, in a question about nilpotent maps, spent pages trying to calculate
the characteristic polynomial of a 4× 4 matrix which you are told is nilpotent. (It’s x4.)

Question 3 This was a very popular question done by most students. And it was done
very well overall. Parts that caused the most problems were (b)(ii) and (iv), and (c)(i)
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(where alternative longer solutions not using (b) were accepted too). But many students gave
complete or near complete solutions. I was happy about this as I didn’t think a question on
adjoints would be so popular and done so well. (I suppose for many it was a choice between
adjoints and nilpotent maps, and the adjoints won out.)

A1: Differential Equations 1

Question 1 Qn1 has been attacked by majority of students. Parts (a) and (b) have been
done well in many scripts. The most difficult part for students was the last one, part (c),
although technically it was easy. The main point of (c) is to get an estimate of the maximum
of modulus of solutions that are not a result of successive approximations.

Question 2 Part (a) Some of the candidates do not understand the definition of stable at
one point. They did not clarify clearly. Most of the candidates write clear and find critical
points. This is not hard for them. Part (b) is harder. Most of the candidates can write well
for the first two questions. They understand the definition of characteristic projections and
characteristic curves, but some of them do not understand how to solve the ODE, which is
the so-called characteristic equations. Therefore, they did not do well for (iii). Only a few
students can find domain of the existence and uniqueness of the explicit solutions, and find
points where f blows up.

Question 3 Part (a). Candidates generally knew how to prove by contradiction for proving
Maximum principle. And many candidates construct many possible examples, which is very
interesting. The proof of (iii) is standard. Most of the candidates can understand clearly what
they are proving and it is clear. Part (b). The question is not that difficult. Candidates know
how to do integration by parts and do estimates. For (ii), it is a standard energy approach.
Most of the candidates can prove u = 0 by using Gronwall’s inequality.

Overall, this is a successful paper with lots of concepts covered and can distinguish whether
the Candidates understand the concepts or not.

A2: Metric Spaces and Complex Analysis

Question 1 Overall, the question was done successfully by most candidates. Many candidates
obtained 20 marks or more, and several obtained 25.

Part a) Here, i) and ii) were largely correct. In iii), many candidates only proved one direction
of the implication, receiving 3 out of 6 marks. In some cases it was clear that the candidate
ran out of time, whereas in others it was apparent that the candidate simply forgot to prove
the other direction.

Part b) In i) many people obtain 4 out 6 marks, by proving everything asked for them
except the triangle inequality. The earlier parts were fine (though some candidates forget
to prove that ρ(F1, F2) = 0 =⇒ F1 = F2), but many answers either do not attempt
the triangle inequality, or make general appeals (e.g. “the maximum preserves the triangle
inequality”), or write inequalities which are incorrect. Few candidates actually expand the
sup/inf definition and operate rigorously. Curiously, most candidates start with ρ(F1, F2) +
ρ(F2, F3) and attempt to bound it below by ρ(F1, F3), rather than the other way around,
which I find more intuitive. In ii), most are able to prove that G is closed and non-empty,
but not many succeed in proving ρ(Fn, G) → 0, receiving only 4 marks out of 6. A number
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of candidates attempt to prove that G is a singleton, not realising that the diameter of Fn

needs not tend to zero. Similarly, in iii), a number of candidates again construct arguments
assuming G is a singleton.

Question 2 Overall, 2(a) was well done; almost all students had the correct definitions
of compactness and a majority of students were able to at least obtain partial marks for
correctly setting up 2(a)(ii). There were two common issues in 2(a)(ii). First, some students
did not prove the property that the intersection of nested closed sets in a compact set is
nonempty. Second, there were some issues with the order of logical quantifiers. In particular,
given an arbitrary sequence (xn)∞n=1, some students first fixed some ε > 0, and then found a
subsequence such that the tail was bounded by this fixed ε. However, this does not imply that
the tail will be bounded by some smaller ε. This was only an issue when students attempted
the proof by building a subsequence using finite covers of ε-balls, and didn’t really affect the
other proof methods.

Question 2(b)(i) was also very well done. The same issue regarding the order of quantifiers
from above was more common in 2(b)(ii). By first fixing an ε, some students tried to find
subsequences which were contained in some ε-ball for finitely many coordinates (since the tail
will already be smaller than ε), while others who iteratively constructed subsequences which
converged in each coordinate only did this for finitely many coordinates; both approaches
(incorrectly) avoided the diagonalization argument. Some students also did not prove the
sequence they constructed converges, even if their construction was correct.

Question 2(c) was quite tricky, and students had issues with all the subparts. Some students
immediately claimed (without proof) that since a subsequence of φ(n)(x) converges, it would
converge to x. With surjectivity, students often made claims without enough justification.

Question 3

Overall, the question was not done very well by most of the candidates. Few candidates
obtained 20 or similar, while the majority obtained lower marks.

Part a) This part was mostly correct.
Part b) Here students had several difficulties; only few of them took the right path, though
they did not complete it.
Part c) In this part the majority of the students understood the main point, but not everyone
completed it.
Part d) Many candidates confused the proposition used to prove the Identity Theorem with
the actual result.
Part e) This part was mostly correct.

Question 4. Q4 was a popular question. Part (a) was harder than it looked, and many
candidates lost marks for not being precise enough with their definitions. For example, for
subpart (i) it was not enough to state the f is holomorphic in a neighbourhood of a: it is
also necessary to say that f is not holomorphic at a itself. Part (b), pure bookwork in the
form of the Casorati-Weierstrass theorem, was done well by those candidates who studied
the notes thoroughly, and it was challenging for all others. Part (c) was straightforward but
computing f ′/f when f is written as a Taylor series is a mess: it is much easier to write
f = (z−a)−ng for some holomorphic g and calculate the Laurent expansion of f ′/f . Part (d)
was tricky: the majority of candidates got as far as applying part (c) to the given function
f = exp(g), but then could not justify why it is impossible for g′ to have a simple pole at
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the singular point. The best solution, found by only a handful of students, was to integrate
g′ along small circular path around the singularity and apply the Fundamental Theorem of
Calculus to derive a contradiction.

Question 5. Part (a) was generally done well. Some of the candidates did not clarify the
removable singularity at 0. Part (b) some of the candidates did not know how to calculate
this integral and did not know how to use Cauchy’s Residue Theorem. Part (c), some of
the candidates did not point out standard semicircular contour and did not know how to use
Cauchy’s Residue Theorem. There is a common mistake that almost all the candidates fail to
take half of the number at the end, taking real parts and noting that the function is an even
function. Overall, this is a successful paper with lots of concepts covered and can distinguish
whether the candidates understand the concepts or not.

Question 6. Overall, the question was done okay by most candidates.
Part a) Here, i) and ii) were often correct when done at all.
Part b) i) Was done successfully by many people. ii) Was sometimes not attempted and
sometimes people obtained 4/6 points as they did not calculate f−1.
Part c) i) Was solved successfully by most people that attempted it. ii) Was rarely solved.
Sometimes people just wrote yes or no without explanation.

Long Options

A3: Rings and Modules

Question 1 Q1 was a long question with a good spread of marks. The aim was to show that
there are Abelian groups (e.g. C5) that do not occur as the group of units of a ring. For the
final part of this the question assumed that Xp − 1 is square-free (for p > 2). This can be
proved by noting that Xp − 1 and its formal derivative pXp−1 are coprime, but this was not
covered in the course and was omitted to avoid an already long question being over-long.

For (a)(ii) a number of answers showed that the projection of I onto the ith factor was
an ideal but failed to justify that I = I1 × · · · × In – compare this with the fact that the
unit disc is not equal to the product of its projections onto the x and y axes. (a)(iii) was
harder, with the point being that if |U(R)| is odd then since −1 is always a unit we must
have −1 = (−1)|U(R)| = 1 by Lagrange’s Theorem and hence R has characteristic 2. (b) was
mostly well done, though many solutions to (b)(i) were unnecessarily long and in (b)(ii) some
misread the ideal 〈x1 · · ·xn〉 as being 〈x1, . . . , xn〉. Part (c) served well to identify those who
had firmly grasped the rings part of the course.

Question 2 Q2 was a question intended to give an example of a module – the Baer-Specker
group – which might seem to be free but which in fact is not. The more routine material of
part (a) was well done and could be done in fairly short order; it set up the tools necessary for
(b). (b)(iv) was hard with very few considering 0 6= π(w) = π(w − fi) and using Z-linearity
to derive the contradiction.

Question 3 Q3 was perhaps the most mixed of the questions – certainly the answers had the
highest variance in score. The original intention with part (b) was to show that if a, b, c ∈ Z
have bc = a2 + 1 then there is F ∈ GL2(Z) such that

F−1
(

a b
−c −a

)
F =

(
0 −1
1 0

)
.

16



The matrix being conjugated on the left has minimal polynomial X2 + 1 so part (b) of the
question applies, and the matrix F can be constructed from the matrices U and V . This
would have been too hard as a question, and so after useful feedback the given Q3 emerged;
it proved very suitable.

For (a)(ii) some failed to realise that A ∈Mn(Q) for general n, though the explicit statement
that n = 2 in (a)(iii) was intended as an extra hint at the generality of (a)(ii). For (b)(i) many
remembered the proof that the Gaussian integers are a Euclidean Domain from the problem
sheets and for (b)(iii) there were a number of different approaches which all showed a keen
understanding of the material. The most common error was to take Q = iI+A, however this
is not invertible. (b)(iv) was quite straight-forward.

A4: Integration

Question 1. Question 1. In part (a), almost all students defined correctly the notion of a
sigma algebra, with exception of a few students which replaced invariance under countable
unions by finite unions. The majority of students also correctly defined what is a Lebesgue
measurable function, although there were a few students who demonstrated confusion between
Borel and Lebesgue sigma algebra. Part (ii) was also quite satisfactory. A few students made
implicitly the additional and unnecessary assumption that the functions are invertible and/or
continuous.

In part (b), (i) the most common mistake was that students did not distinguish between
the case where m(E) < ∞ and m(E) = ∞. In part (ii) the most common mistake was
that students did not prove equivalence between m(E) <∞ and the condition stated in the
question (very few students proved both directions). Other more serious mistakes included
false statements such that any compact set can be written as a union of an interval and a
null set.

In part (c), (i) most students gave a correct answer and a correct counterexample. Some
students demonstrated a confusion between the Cantor and Vitali sets, and made the false
claim that the Cantor set is not Lebesgue measurable. Much less students did well on part (ii).
Some students just left a blank space or made a false claim of a counterexample (for example
by taking product of 2 ”exotic” null sets and mistakenly thinking they are not measurable).
Among the students that demonstrated a correct approach, a few did not indicate clearly
enough where exactly Tonelli theorem is being used.

In part (d), most students realized that one should use use the fact that the measure of E
can be written as the infimum over all countable covers by intervals, but the application of
this was at times incorrect or with missing details. Many students did not explain clearly
enough how exactly to choose the requested interval. A more serious mistake included a false
claim (usually also with no attempted proof) that any set of positive measure must contain
an interval.

Question 2. a(i) was generally very well answered, though several candidates made things
more difficult than needed by considering substitutions y = 1

x or y = 1
x3 . This doesn’t

actually make the problem easier (though typically these substitutions where well done), and
it’s faster to note that sin(1/x3) is bounded on (0, 1) and | sin(1/x3)| ≤ 1/x3 on [1,∞). a(ii)
was also generally well answered. However a number of candidates claimed that 1/x is an
antiderivative of log x and obtained the incorrect result that log x is not integrable on (0, 1).
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The strategy of performing a polar substitution in (b)(i) was identified and implemented by
most candidates, but not all took care to justify the various steps involved by clearly indicating
the polar substitution theorem and how the theorems of Tonelli and Fubini are used to support
the calculations. In b(ii) many candidates correctly used the continuous parameter DCT to
obtain continuity of F (t) on [0,∞) and hence at 0. Establishing differentiability proved much
more problematic, with a number of candidates either failing to use a local version of the
differentiation theorem (often claiming incorrectly that expressions of the form K

x2 e
−x2

would
be integrable on (0,∞)), or struggling to get the estimates in a local version to work out. The
very last part of the question contained an error: it should have asked for F ′(t) = −2F (t).
The mark scheme was adjusted so that it was not necessary to compute F ′(t) in order to get
full marks, but sensible attempts where rewarded. I’m sorry to students taking this paper for
this error, which will be corrected for students revising in future years.

Question 3. Part (a) was generally done well. Most candidates can prove Minkowski’s
inequality. Many of them use the convexity of function and separate the discuss when the
function is zero nor not. Some of the candidates did not distinguish the normed spaces for
p = ∞ or p < ∞. For the completeness of Lebesgue’s space, some of the candidates did not
suppose the sequence is Cauchy and then prove its convergence, which is not correct. Part
(b) was not that easy. Some of the Candidates write something meaningless. And they make
the wrong statements and construct wrong counter example. For the second statement, some
of the candidates did not use Cauchy Swartz’ inequality and DCT which is not correct. Part
(c) , a few number of candidates write nothing, but some of the candidates write well and
are very clear what they are going to prove. Overall, this is a successful paper with lots of
concepts covered and can distinguish whether the Candidates understand the concepts or not.

A5: Topology

Question 1 Virtually all candidates attempted this question.

1a i. Many candidates gave an incorrect definition for connected subsets.

1aii, 1aiii generally well done.

1aiv Several different examples were given, generally correct.

1av. Candidates found this question challenging. Several candidates tried to prove this using
only that the space is Hausdorff-which is of course false.

1bi. Many candidates realized that they could use 1aiii and answered this correctly.

1bii Generally well done.

1biii Candidates found this challenging but several managed to give a valid argument.

Question 2 Many candidates attempted this question.

2ai. Generally well done.

2aii The proof that f is continuous was often wrong or missing, and similarly for f−1.

2aiii. Students found hard to give a formal proof of this. Some candidates got partial credit
for describing a correct map without a formula.

2aiv. Mostly well done.
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2bi, bii Done by most candidates.

2biii Sometimes students gave a map that was not actually a homeomorphism and got no
marks.

2biv. Some students gave counterexamples with X not a metric space as required.

Question 3 28 candidates attempted this question.

3ai. Well done but some students did not define the standard n-simplex or were not very
precise in their definition of the quotient space.

3aii. Some arguiments were not formal enough, for example they did not define precisely the
two subcomplexes and got only partial credit.

3aiii, aiv Well done

3bi, bii Generally triangulations were correct but the proof of the second part was not always
clear.

3biii Students found this hard and some gave incomplete proofs, but there were some fully
justified solutions too.

A6: Differential Equations 2

Question 1 - was the most popular question and was attempted by almost every candidate.
This question was generally done well, especially parts (a) and (b). Quite a few candidates
made slips with the algebra to find the Green’s function - a very common minor error being
to inadvertently flip the sign of the jump condition on the function’s gradient. A common
issue in part (c) was not to note the boundary conditions and assume a simpler homogenous
orthogonality condition.

Question 2 - the attempts at this question were wide ranging. Many candidates got lost
in the algebra to deal with the Frobenius series in part (a), due in part to the series not
being centered at x = 0 (a simple shift of variables, as shown in lectures, would have helped
many). Part (b) was done better than part (a), although the connection to the eigenfunctions
Pn, and particularly to P0, seemed to be lost on many (with more general statements given
about orthogonality to the homogenous adjoint solutions). Many candidates did not give
much answer for part (c), but those that did have a significant attempt generally did quite
well. Some candidates left their answer in terms of inner products involving the Pn that were
not noted to be zero by the orthogonality condition in (b).

Question 3 - this question proved surprisingly challenging. Part (a)(i) was mostly fine,
though a common issues was to over-use Taylor expansions of sin(x) even for solutions that
are not close to x = 0 (though most candidates were still able to obtain the correct answers
with appeals to periodicity). Very few candidates realised that a general scaling (leading to
x ∼ ε1/3) was needed to locate the root near x = 0 in part (ii). In part (b), many candidates
had the boundary layers in the wrong locations, and there was quite a lot of confusion about
which boundary conditions to apply where (for example some candidates made the outer
solution in part (i) satisfy the boundary condition at x = 0 as well as a having a boundary
layer there). This went together with frequent confusion about how to match between inner
and outer solutions. Nevertheless, this part was completed fully by a number of candidates
and generally seemed to be found easier than part (a).
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A7: Numerical Analysis

This appear to have been a reasonably fair paper with marks across a wide range. Most
candidates seem to have been reasonably prepared, though there were three particularly poor
scores where candidates seem not to have engaged with the material of the course.

Question 1 Q1 on eigenvalue computation was attempted by the majority of candidates. The
standard bookwork in part (a) most often attracted full marks, though some candidates failed
to produce a correct proof for Gershgorin’s Circle Theorem. Part(b) was also bookwork that
was done reasonably by many though there were several misconceptions. Part(c) on inverse
iteration asked for synthesis which many candidates were able to provide at least in part.
The unseen example in part(d) proved a challenge for many though there were some excellent
attempts including a few with full marks. It was somewhat disappointing that the majority
of demonstrations of the invertibility of the given matrix reverted to a direct computation
of the determinant using cofactors when a simple application of the Gershgorin Theorem of
part (a) immediately shows this.

Question 2 Q2 on interpolation was attempted by all candidates bar one and there were
several high scores. The standard bookwork in part (a) most often attracted full marks,
though some candidates were careless about polynomial degree and some produced only some
of what was asked for. Only about half of candidates successfully completed part(b) with
rather more than one might expect not realising that xk interpolates itself at any data points
and thus if of low enough degree to be a candidate for the Lagrange Interpolating polynomial
must be it because of uniqueness (as proved in part(a)). Even if this was realised, fewer
observed that the requested result followed from simple equating of a polynomial coefficient
with rather too many attempting brute force calculational proofs none of which was successful.
The unseen part (c) on rational interpolation was actually quite well done by those who
attempted it.

Question 3 Q3 on numerical methods for Ordinary Differential Equations attracted only a
handful of serious attempts even though it was largely the application of standard ideas to a
particular numerical method.

A8: Probability

See Mathematics and Statistics report.

A9: Statistics

See Mathematics and Statistics report.

A10: Fluids and Waves

Question 1.This question, and particularly the first two parts, was generally well done. In
part (c) many students forgot to apply the pressure boundary condition at r = R(t) and very
few were able to spot the first integral suggested by the hint. Finally, students did not always
use both initial conditions to determine the constant of integration and hence determined an
incorrect integral for the collapse time.

Question 2. This question was attempted by all candidates. Part (a) was well done, but
in part (b) relatively few candidates were able to show that the two stagnation points lie on
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the required circle. (Candidates tended to write down the general solution of a quadratic,
which is tricky to deal with; a better strategy was to spot that the condition for a stagnation
point simplifies and can be ‘square-rooted’ to give two linear equations, one for each of the
stagnation points.) Part (c) was generally well done, albeit with errors in the application of
the residue theorem. In part (d), very few students appreciated that the calculation of the
complex potential from part (a) needed to be modified because now b(t) ∈ C. (This simplifies
the calculation significantly because then the denominator is a function of a2 − |b|2.)

Question 3. Part (b) of this question was generally done very well. However, many candi-
dates struggled to provide the definitions in part (a) — particularly the meaning of dispersive
versus non-dispersive — which then held them back in the latter stages of part (c).

A11: Quantum Theory

All candidates but one chose Question 1. A little more than 1/4 of the candidates chose
Question 3, which was conceptually the most advanced and unfamiliar, but technically not
very demanding. The average score of this group of candidates was high and the separate
averages on Question 1 and Question 3 only differed by about half a mark. A little less than
3/4 of the candidates chose Question 2, and their score was considerably lower on average
and their separate averages on Question 1 and Question 2 were within one mark.

Question 1 In part a) a sizeable fraction of candidates did not find the correct quantisation
of k, which then often derailed their attempts in the later parts of the problem. If a candidate
found the correct answer for b) (i), they almost always worked their way through the rest of
part b) with ease, indicating that they had a good grasp of continuous time evolution and
measurement in quantum theory. Only a few candidates engaged with part c) substantially,
but those who did earned a good fraction of the marks.

Question 2 The marks on this question were low; candidates struggled with part a), which
was intended as bookwork. In particular many did not reproduce the relations ψn1,n2(x1, x2) =
ψn1(x1)ψn2(x1) and En1,n2 = En1 +En2 even though this was covered in lectures and similar
ideas have featured several times throughout the course. We also note that this question
was very similar to Question 2 on the 2021 exam. Some candidates got lost in computing
commutators without a strategy in part d). Only very few candidates got to the challenging
part e) question.

Question 3 The marks on this question were very high, but it seems that only the most
prepared candidates chose this question. The conceptual difficulty and unfamiliarity of this
problem was balanced with its relative technical simplicity. Part a) of this question was book-
work. About half of the candidates used nonstandard conventions for Pauli matrices; they
still got full marks. Part b) was seen before, but not practiced extensively. The subquestions
led the candidates through the derivations in small steps, which they followed with ease. The
only point of failure was not imposing the condition J− = (J+)∗. Part c) was conceptually
the least familiar question in the exam, with the Hamiltonian being a finite dimensional ma-
trix and the continuous time evolution interrupted by multiple measurements, but candidates
navigated the conceptual part very well. Some lost time on finding the eigenstates of J1 with
eigenvalue ~.
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Short Options

ASO: Q1. Number Theory

Many candidates found (a)(i) challenging. The fact that the group of units is a cyclic group
of order p-1 was mentioned, but many candidates did not use this to determine the number
of solutions. Another approach was to use FLT to reduce to k < p, but many candidates
still had problems determining the number of solutions after that. In (a)(ii) most candidates
did not observe that given any solution one can multiply by a solution to (i) to get another
solution thus giving the same number of solutions as in (i) if solutions exist. (b) was done
well by most candidates. Very few candidates managed to prove (c)(i). Most candidates who
attempted this part of the question realised that any solution mod pl is a solution mod p, but
very few tried to use induction to show the other direction by lifting solutions from mod pk

to mod pk+1. Many candidates solved (c)(ii) even if they did not solve c(i).

ASO: Q2. Group Theory

This question was about defining groups in terms of generators and relations. In particular
it concerned showing that SL(2, Z) could be generated by two elements.

Most people got the definition in (a) of group presentations in terms of generators and relations
roughly correct, though many were too sketchy on details.

Part (b) on applying the Euclidean algorithm was fairly well done, but again many candidates
didn’t give enough detail in part (c). There was some confusion about the group whose
presentation had generators u, v with relations u2 = v3 = 1. Some people thought this was
the direct product C2×C3 while of course it is the much larger free product as we don’t know
u and v commute. Part (d) was generally found difficult though a few candidates made good
progress.

ASO: Q3. Projective Geometry

This question was about the geometry of conics.

Candidates generally performed well on this question. The bookwork on classification of
conics and intersection of projective lines was mostly well understood.

Most people got the idea in part (b) that the set of quadratic homogeneous polynomials in
x, y with repeated factors itself forms a conic in the projective space of all such polynomials,
defined by vanishing of the discriminant. Some forgot to show this conic was nonsingular.

Part (c) created problems in some cases but most people realised that tangency was equivalent
to the line meeting the conic in a unique point and used this to solve the question.

In part (d) most people got the rough idea of the factorisation but many failed to account for
special cases. The last part was generally done well.

ASO: Q4. Multidimensional Analysis and Geometry

Relatively few candidates attempted this question, but for the most part those that did made
a good attempt at it. As such, although no candidate scored perfectly on the question, every
part of the question was solved by some candidate. Part (a) was generally well-answered, and
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candidates lost marks largely for not providing sufficient justification for the claims made in
their answers. Part (b) was also largely well-answered, with the most challenging point being
the inclusion TeO(E) ⊆ A(E). Part (c) was the most demanding part of the question, with
most candidates failing to appreciate that exp: L → L is not injective.

ASO: Q5. Integral Transforms

a) Part (a) was generally well done, with most candidates correctly recalling the definition
of the distributional derivative and using this to identify the derivative of the Heaviside
distribution. The derivatives of |x| caused more problems, with some candidates considering
x > 0 and x < 0 separately without commenting on the ambiguity at x = 0. Those who saw
that |x| could be written in terms of the Heaviside function were generally able to use the
earlier parts of the question to find the solutions with little difficulty.

b) i) Most candidates found the Laplace transform of the function, but the discussion around
the values of p for which the transform existed was occasionally lacking. ii) Candidates
who recalled the Laplace Convolution Theorem generally had few difficulties with this part,
while a few were able to derive the solution through alternate means. Those who found the
Laplace transform of I(x) generally had few issues recognising its relation to the solution of
the required equation, and were able to solve the problem by inverting it and setting x = 1.

c) i) Generally well done - the most common problem here was in calculating the Fourier
transform of the original equation. Those who completed this usually recognised why its
relationship to the original equation required f̂(s) = λf(s). ii) Most candidates did well in
this part, with the most common cause of lost marks being to assume the initial statement
that f̂(0) = 1 rather than showing it as asked. The subsequent parts of the question were
well done. iii) This caused surprisingly many problems, with several candidates unable to
correctly find the Fourier transform of g(x). Those who found it correctly generally went on
to find the correct solutions to the question.

ASO: Q6. Calculus of Variations

Overall the question seemed to work reasonably well. There was a decent spread of marks,
and it seemed to successfully distinguish stronger candidates from weaker ones. Pleasingly,
the vast majority of candidates produced a good answer for part (a) of the question, which
demonstrated that they’d understood the basic ideas in the course. Parts (b) and (c) were both
more challenging, and distinguished between stronger candidates. Slightly more candidates
than expected failed to make much progress on either of these later part, so there were a
few too many candidates who produced a good solution to (a) and little for either (b) or (c),
indicating that part of them should perhaps have been pitched a little bit lower.

ASO: Q7. Graph Theory

This question was, in the assessor’s view, a successful one. Part (a) tested a central topic in
the course (Dijkstra’s algorithm) in a way that was accessible to almost all students. Part
(b) started off gently, with a request for reasonably straightforward proof, but ended with a
more challenging final part.

The assessor was impressed by the quality of the answers, with most students providing clear
and accurate solutions to most of the question.
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Part (a) was very well done, with the majority being able to recall Dijkstra’s algorithm and
to implement it in the example. Parts (b)(i) and (b)(ii) were also generally well done. Almost
all students had the right idea, but some struggled to formulate their arguments precisely.
Part (b)(iii) provided the most challenge, and the majority of students gained less than half
marks on this question. Most successful students followed the expected solution (where the
algorithm is modified so that an edge is removed only if the resulting subgraph is connected).
However, there were other correct solutions which started from a union of shortest max-
length paths, and then removed further edges suitably until the subgraph formed a tree. A
few students attempted to modify Dijkstra’s algorithm to solve (b)(iii), which is possible, but
generally the answers here were incomplete.

There was one minor inaccuracy in the question. In (b)(i), the candidates were required to
prove a statement about the graph Gn. It was the setter’s intention that this graph Gn refers
to the output from the algorithm. However, the output is in fact Gn+1. Almost all students
interpreted the question in the way that was intended. In fact, the question is correct as
stated because necessarily Gn = Gn+1 (and this can be easily proved). However candidates
were certainly not required to make this observation. The assessor is confident that this minor
inaccuracy caused students no difficulties.

ASO: Q8. Special Relativity

The course is for distinguishing relativistic spacetime from Galilean spacetime. Most of the
students who take the exam understand the material very well. For the book work part,
their performance is nearly perfect. They also did fine in the application part, which is not
technical this year. There are still several students who did poorly even in the bookwork part.

ASO: Q9. Modelling in Mathematical Biology

(a) The biological explanation was quite well done but some candidates did not stress that
the r’s are linear growth rates (strictly speaking, per capita linear growth rates) and a number
of candidates proposed this as a predation model rather than a competition model. The rest
of this question was very well done.

(b) Everyone knew how to do linear stability analysis but a surprising number of candidates
did not seem to realise that the eigenvalues of a 2x2 matrix, when one off-diagonal term is
zero, are simply the diagonal terms. Much time was lost doing unnecessary time-consuming
calculations. Virtually all students struggled to draw phase planes.

(c) Few students attempted this part.
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