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A new approach to the mean-field limit of
Vlasov-Fokker-Planck equations

P.-E. Jabin, joint work with D. Bresch and J. Soler
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Introduction
Our first objective is to obtain the mean-field limit for kinetic
models such as the Vlasov-Poisson-Fokker-Planck, while keeping
the full singularity.
More generally we wish to understand better the statistical
properties of large systems of agents/particles with realistic,
singular interactions:
® Can we control how agents/particles may concentrate or
aggregate in a given region? This is critical for the mean-field
limit but also of interest on its own.
® What can be said of such systems in a transient regime when
away from molecular chaos, when correlations cannot be
neglected?
® Are there physical quantities that can be propagated, at least
over some time scales, to answer this?

— When diffusion is present, it is possible to weight observables
with the energy to do just that.
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From very large particles: Galaxies

Figure: Credits: CNRS, France; Numerical simulation of the formation of
large scale structures in the universe: Dynamics of galaxies moving to the
central concentration.
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To very small agents: Biological neurons

Figure: Credits: CNRS Bordeaux, France; 2D reconstruction of rat
hippocampus, marked for cytoskeleton protein.
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Particles or agent are everywhere

Many-particle or multi-agent systems are used in a widespread
range of applications

Plasmas: Particles are ions or electrons.

Astrophysics: Particles are dark matter particles, galaxies or
galaxy clusters...

Fluids: Point vortices, suspensions...

Bio-mechanics: Medical aerosols in the respiratory tract,
suspensions in the blood...

Bio-Sciences: Collective behaviors of animals, swarming or
flocking, but also dynamics of micro-organisms, chemotaxis,
cell migration, neural networks...

Social Sciences: Opinion dynamics, consensus formation...

Economics: Mean-field games...
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Just as much variation in the number of particles

What is N the number of particles or agents under consideration?

In cosmology /astrophysics, N ranges from 10 to 10%° — 10%;
some models of dark matter even predict up to 100 particles.

In plasma dynamics, N is typically of order 10%° — 10%°. This
is the typical order of magnitude for physics settings.

When used for numerical purposes (particles’ methods...), the
number is of order 10° — 10'2.

In biology or Life Sciences, typical population of
micro-organisms include between 10° and 10'2.

In other applications such as collective dynamics, Social
Sciences or Economics, numbers can be much lower of order
103.
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The inside of the future Tokamak at ITER

Figure: Credits: ITER, France.



Many-particle and multi-agent systems The setting Our new approach
000000@ 0000000 000000000

A guiding example: The dynamics of point charges

Consider ions or electrons in a plasma when their velocities is small
enough w.r.t. the speed of light. Denote by

m; = Total mass of particle #i, q; = Total charge of particle #i,
Xi(t) = position of the center of mass at time t,

V;i(t) = velocity of the center of mass at time t.

Then we have the following system of coupled SDE’s

LX) = Vi(t), m;dv/(t>=§q;q,~f<<x;><j)+odvvi, (1)
JFEI

with the electrostatic force derived by Coulomb in 1785

K(x) = % in dimension 3, K(x) = @

in dimension d.



Many-particle and multi-agent systems The setting

Our new approach
000000e

0000000 000000000

A guiding example: The dynamics of point charges

Consider ions or electrons in a plasma when their velocities is small
enough w.r.t. the speed of light. Denote by

m; = Total mass of particle #i, q; = Total charge of particle #i,
Xi(t) = position of the center of mass at time t,

V;i(t) = velocity of the center of mass at time t.

Then we have the following system of coupled SDE’s

X1 = ile), midvi(t) = S ai g KX~ X)) +0 Wi, (1)
J#
where the W; are independent Brownian motions, representing

collisions against a random background (electrons against the
background of ions for example).
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Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

d

EX" =V, X(0)end,

1
dV; = S(X;) dt + N Z K(X; — X;) dt + o dw;, V;(0) € RY.

JF#i

We consider indistinguishable particles or agents, leading to an
exchangeable system. This is a classical assumption that makes
sense for some settings (electrons...) and less for others.
However our method would extend to non-exchangeable systems
under reasonable assumptions.
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Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

d
—Xi= Vi, X;(0)en?,
o (0) €
1
dV; = S(X;) dt + N ZK(XJ — X;)dt + o dw;, V;(0) € RY.

J#i
We assume the mean-field scaling, which formally makes the
interaction sum of order 1.

As long as K is homogeneous, this is equivalent to fixing the scales
and in particular the time scale.
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Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

d
—Xi= Vi, X(0)en,
p (0) €
1
dV; = S(X;) dt + > K(X; = Xi)dt + o dw;,  Vi(0) € RY.

JF#i

The kernel K represents a general two-body interaction term.
Typically for us, K is unbounded and singular and we should try to
require as few assumptions as possible on it.

One may also include a self-interaction force S(x) which can be an
external magnetic fluid or self-propulsion.

It would also be possible to add a friction term —V; dt in the force
term.
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Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

d
—X; =V, X;(0)end,
p” (0) €
1
dV; = S(X;) dt + N Z K(X; — X;) dt + o dw;, V;(0) € RY.

JF#
For simplicity, we assume that the positions X; are on the torus
M9. The case of bounded domains with proper boundary
conditions could be handled in a similar manner. Taking X; in the

whole R? would require adjustments.
The velocities V; are a priori unbounded in the whole space.
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Brief overview of the existing literature
The rigorous derivation of mean-field limit for
Vlasov-Poisson-Fokker-Planck had remained fully open, in spite of
many efforts:
® The case of Lipschitz interactions K(x) was handled by
McKean 67 and Sznitman 91 for the stochastic setting and by
Braun-Hepp 77, Dobrushin 79 in the deterministic setting.
Still important to further understand the framework. See for
example Golse 16, Golse-Mouhot-Ricci 13, Hauray-Mischler
14, Mischler-Mouhot 13...
* Mild singularities K(x) << |x|~! were handled in
Hauray-Jabin 09 and 15.
® Truncated kernels (essential for numerics) in Boers-Pickl 16,
Lazarovici-Pickl 17, Pickl 19 and in Huang-Liu-Pickl with
diffusion.
® Singularity not at the origin: Carrillo-Choi-Hauray-Salem 18
for swarming models.
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Deriving Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck in
dimension 1 seems to be more accessible, as per
Hauray-Salem 19, Guillin-Le Bris—-Monmarché.

Derivations of fluid equations or first order macroscopic
systems directly from second order models are also known, see
Duerinckx—Serfaty 20 and Han-Kwan—lacobelli 21.

Marginals also play a key role in understanding fluctuations,
Lacker 21, and corrections to the mean-field limit as in
Duerinckx—Saint-Raymond 21.

Deriving collisions models is even harder, also relies on
controlling the marginals (without diffusion!). See Lanford 75
and more recently Gallagher—Saint-Raymond—Texier 14,
Bodineau—Gallagher-Saint-Raymond 17,
Bodineau—Gallagher-Saint-Raymond—Simonella 20 or
Pulvirenti-Saffirio-Simonella 14, Pulvirenti-Simonella 17
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Marginals or observables

The statistical information about the system is contained in the
various marginals or observables:

fi(tyx1, vi, ..., Xk, vk) = Law at time t of Xy, Vq,..., Xk, Vk.

For example f; is the 1-particle distribution, while f, contains
information about correlations between particles.
The various marginals are nested in a natural hierarchy

fi(t, X1, v, ..oy Xk, Vi)

:/d dfk+1(f,X1,V1,---,Xk+1,Vk+1)ka+1 dviy1.
Md xR
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Marginals control concentrations of particles
Consider for example a small region Q € M9 x RY. The average

proportion of particles concentrated (2 is directly given by
integrating f;. To control concentrations, we need to bound

/ fi(t,x,v)dxdv << 1, if |Q << 1.
Q
If Q is a ball or spherically symmetric, we can sometimes use the

potential energy. Otherwise, any LP bound on f; would allow to
quantify this with for example

/ At x,v) dx dv < QY2 [t )l 2.
Q

However if we only look at concentrations in positions with
Q = w x RY, we would also require control of the tails in velocity.
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How can we get bounds on the marginals?

There are only two already known ways of obtaining such LP
bounds on the marginals:

® Through some strong propagation of chaos. This means
assuming that the (X?, V?) are independent and identically
distributed, or i.i.d., and proving that at time t, the (X, V;)
are almost i.i.d. as well. This allows to use the mean-field
limit to estimate concentrations. However we are instead
hoping that the bounds on the marginal will help with
propagation of chaos.

® Make use of the Gibbs entropy of the system. This is
straightforward (see next slide) but provides a very weak

estimate
C

fi(t,x,v)dxdv < ————.
R 0g 1/19
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The Gibbs entropy

Because the interactions are divergence free, the Gibbs entropy of
the full joint law is decreased

1
N/fN(t,Xl,Vl,...,XN,VN) log fy dx1 dvy ... dxpy dvy

1

< m / F(x1, Vi, ..., xn, v) log F dxy dvy . .. dxy dvy.

Moreover since the entropy is sub-additive then
/ fi(t, x1,v1) log fi dxy dv
1
< N fN(t, X1y Viyeoo s XN, VN) |Og fN Xm dVl o dXN dVN.

Unfortunately, it is the only simple quantity satisfying those
properties...
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The BBGKY hierarchy

Each marginal solves a linear PDE

k
1
Of + E V,"infk-F E S(Xi)+N g K(Xi_xj) 'vv,-fk
i=1

i<k i<k
N — k
e Z V- frr1 K(Xi = Xiq1) dXk1dVier
i<k Md xR9
2
ag
=5 2 Ak
i<k

(2)

Unfortunately each equation involves the next marginal fx11; more
precisely and even worse because of unbounded velocities, it
involves

/ frr1 dviyr.
JRRd



particle and multi-agent systems The setting Our new approach

0000000 O@0000000

Propagating bounds on f;

In general the issue when trying to propagate LP bound on fy is
that it would require to bound

HVV,/ fit1 dvis1
Rd

LP

This leads to unrealistic assumptions as the control on f; requires
a control on V, f, then V2£; and so on...

However when using the regularizing effect of the diffusion, it is
possible to improve this and only require

/ fir1 dvirt
Rd

This only leaves the issue of unbounded velocities...

LP
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Our new result
We need to use the energy reduced to k particles by defining

ek(x1, Vi X vi) = 3 (14 [vif?) Z¢ Xi = Xj),
i<k ij<k

for the potential ¢ s.t. K = —V¢.
Observe that ey is conserved by the reduced interactions

k

k
Z V,"VX,.—F%ZK(X,'—XJ')-VW e = 0.

i=1 j=1

For repulsive interactions, ¢ > 0 and we may use e, as a modified
weight to control Gaussian decay in velocity

/ e [£i|? dxy dvy . . . dxy dvg.
[k 5 Rk
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A simple differential inequality

Denote

1

Xk(t) :/|fk,N|qe)\(t)ek7 )‘(t) = /\(l—l—t)

Then we have that
t
Xe(£) < Xe(0) + k L / Xera(s) ds,
0

for some L ~ ||K||7,.
It is straightforward to solve this hierarchy and obtain appropriate
bounds provided that
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Quantitative bounds on the marginals

Theorem
Assume S, K € LP(N?) for some p > 1, K = —V¢ with ¢ > 0.

Define 1
N =Gz

for a positive constant \, depending only on p, q, d and o.
Assume that

#2120 e <
Mkd x Rkd

for some Fo > 0 and q such that 2 < q < oo, with1/q+1/p < 1.
Then, one has that

sup/ |fk7N|qu(t)ek < 2k Fk,
t< T Jkd x RKd

for some T ~ 1 independent of N.
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Implying the mean-field limit

Corollary

Under the assumptions of the previous theorem, let f be the
unique smooth solution to the limiting equation with initial data
O € C>(N9). Assume moreover that the initial marginals fk07N
converges weakly in L to (f0)®K for each fixed k for some M > 0
and for all k < N. Then there exists T* depending only on M,
|K||p and ||(divK)_||~ such that the marginals fi n weakly
converge to fy = &% in L} ([0, T*] x M) for any k, and any

q < 00.

This result can easily be made quantitative if K € LP with p > 2

and provides
Crok
[fen — FE e < N
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Conclusions

Novel, straightforward quantitative estimates with minimal
assumptions on the interaction kernel.

Fits with the expected scaling of molecular chaos where
fi, = £k but valid in any regime.

Only holds for short times, in line with known blow-up in
velocity moments for Vlasov-Poisson in dimension d > 4.

Provide a convergence in O(1/N) of the marginals in the
mean-field limit (cf. Duerinckx, Lacker) vs. the stochastic
fluctuations in O(1/v/N) (see for example Fernandez-Méléard
97).
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Even more straightforward for systems on bounded

domains
Consider
iX-(t)—l ZK(X-—X-)dt—I—JdW~ X~(t—0)—X0
dt i - N o i \j i i\t — — Ny

fully on the torus M.
The mean-field limit is similar

2
Oef + (K xx f) - Vyf = % Axf.

Because this system does not involve unbounded velocities, many
technical difficulties in our proofs actually vanish: We do not need
to impose Gaussian decay or have K derive from a repulsive
potential...
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Theorem
Assume that

K ¢ LP(NY)  for some p>1, (divK)_ € L>=(N9),

where x_ denotes the negative part of x. Let f be the unique
smooth solution to the limiting equation with initial data
fO € C>(N9). Assume that the initial marginals f2,, converges

weakly in L* to (f°)®k for each fixed k and that
12 pll oo (amy < M,

for some M > 0 and for all k < N. Then there exists T*
depending only on M, ||K||1» and ||(divK)_||i= such that the
marginals fi y weakly converge to f, = f& in L] ([0, T*] x Nkd)
for any k, and any q < oo.
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