The setting

Our new approach

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A new approach to the mean-field limit of Vlasov-Fokker-Planck equations

P.-E. Jabin, joint work with D. Bresch and J. Soler

Introduction

Our first objective is to obtain the mean-field limit for kinetic models such as the Vlasov-Poisson-Fokker-Planck, while keeping the full singularity.

More generally we wish to understand better the statistical properties of large systems of agents/particles with realistic, singular interactions:

- Can we control how agents/particles may concentrate or aggregate in a given region? This is critical for the mean-field limit but also of interest on its own.
- What can be said of such systems in a transient regime when away from molecular chaos, when correlations cannot be neglected?
- Are there physical quantities that can be propagated, at least over some time scales, to answer this?

 \rightarrow When diffusion is present, it is possible to weight observables with the energy to do just that.

The setting

Our new approach

From very large particles: Galaxies

Figure: Credits: CNRS, France; Numerical simulation of the formation of large scale structures in the universe: Dynamics of galaxies moving to the central concentration.

The setting

Our new approach

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

To very small agents: Biological neurons

Figure: Credits: CNRS Bordeaux, France; 2D reconstruction of rat hippocampus, marked for cytoskeleton protein.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Particles or agent are everywhere

Many-particle or multi-agent systems are used in a widespread range of applications

- Plasmas: Particles are ions or electrons.
- Astrophysics: Particles are dark matter particles, galaxies or galaxy clusters...
- Fluids: Point vortices, suspensions...
- Bio-mechanics: Medical aerosols in the respiratory tract, suspensions in the blood...
- Bio-Sciences: Collective behaviors of animals, swarming or flocking, but also dynamics of micro-organisms, chemotaxis, cell migration, neural networks...
- Social Sciences: Opinion dynamics, consensus formation...
- Economics: Mean-field games...

Just as much variation in the number of particles

What is N the number of particles or agents under consideration?

- In cosmology/astrophysics, N ranges from 10¹⁰ to 10²⁰ 10²⁵; some models of dark matter even predict up to 10⁶⁰ particles.
- In plasma dynamics, N is typically of order $10^{20} 10^{25}$. This is the typical order of magnitude for physics settings.
- When used for numerical purposes (particles' methods...), the number is of order $10^9 10^{12}$.
- In biology or Life Sciences, typical population of micro-organisms include between 10⁶ and 10¹².
- In other applications such as collective dynamics, Social Sciences or Economics, numbers can be much lower of order 10³.

The setting

Our new approach

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

The inside of the future Tokamak at ITER

Figure: Credits: ITER, France.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A guiding example: The dynamics of point charges Consider ions or electrons in a plasma when their velocities is small enough w.r.t. the speed of light. Denote by

 m_i = Total mass of particle #i, q_i = Total charge of particle #i, $X_i(t)$ = position of the center of mass at time t, $V_i(t)$ = velocity of the center of mass at time t.

Then we have the following system of coupled SDE's

$$\frac{d}{dt}X_i(t) = V_i(t), \quad m_i \, dV_i(t) = \sum_{j \neq i} q_i \, q_j \, K(X_i - X_j) + \sigma \, dW_i, \quad (1)$$

with the electrostatic force derived by Coulomb in 1785

$$K(x) = \frac{x}{|x|^3}$$
 in dimension 3, $K(x) = \frac{x}{|x|^d}$ in dimension d.

A guiding example: The dynamics of point charges

Consider ions or electrons in a plasma when their velocities is small enough w.r.t. the speed of light. Denote by

 m_i = Total mass of particle #i, q_i = Total charge of particle #i, $X_i(t)$ = position of the center of mass at time t, $V_i(t)$ = velocity of the center of mass at time t.

Then we have the following system of coupled SDE's

$$\frac{d}{dt}X_i(t) = V_i(t), \quad m_i \, dV_i(t) = \sum_{j \neq i} q_i \, q_j \, K(X_i - X_j) + \sigma \, dW_i, \quad (1)$$

where the W_i are independent Brownian motions, representing collisions against a random background (electrons against the background of ions for example).

Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

$$\begin{split} & \frac{d}{dt}X_i = V_i, \quad X_i(0) \in \Pi^d, \\ & dV_i = S(X_i) \, dt + \frac{1}{N} \, \sum_{j \neq i} K(X_j - X_i) \, dt + \sigma \, dw_i, \quad V_i(0) \in \mathbb{R}^d. \end{split}$$

We consider indistinguishable particles or agents, leading to an exchangeable system. This is a classical assumption that makes sense for some settings (electrons...) and less for others. However our method would extend to non-exchangeable systems under reasonable assumptions.

Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

$$\begin{split} & \frac{d}{dt}X_i = V_i, \quad X_i(0) \in \Pi^d, \\ & dV_i = S(X_i) \, dt + \frac{1}{N} \, \sum_{j \neq i} K(X_j - X_i) \, dt + \sigma \, dw_i, \quad V_i(0) \in \mathbb{R}^d. \end{split}$$

We assume the mean-field scaling, which formally makes the interaction sum of order 1.

As long as K is homogeneous, this is equivalent to fixing the scales and in particular the time scale.

Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

$$egin{aligned} &rac{d}{dt}X_i=V_i,\quad X_i(0)\in\Pi^d,\ &dV_i=S(X_i)\,dt+rac{1}{N}\,\sum_{j
eq i}K(X_j-X_i)\,dt+\sigma\,dw_i,\quad V_i(0)\in\mathbb{R}^d. \end{aligned}$$

The kernel K represents a general two-body interaction term. Typically for us, K is unbounded and singular and we should try to require as few assumptions as possible on it.

One may also include a self-interaction force S(x) which can be an external magnetic fluid or self-propulsion.

It would also be possible to add a friction term $-V_i dt$ in the force term.

Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

$$\begin{split} & \frac{d}{dt}X_i = V_i, \quad X_i(0) \in \Pi^d, \\ & dV_i = S(X_i) \, dt + \frac{1}{N} \, \sum_{j \neq i} K(X_j - X_i) \, dt + \sigma \, dw_i, \quad V_i(0) \in \mathbb{R}^d. \end{split}$$

For simplicity, we assume that the positions X_i are on the torus Π^d . The case of bounded domains with proper boundary conditions could be handled in a similar manner. Taking X_i in the whole \mathbb{R}^d would require adjustments.

The velocities V_i are a priori unbounded in the whole space.

Brief overview of the existing literature

The rigorous derivation of mean-field limit for Vlasov-Poisson-Fokker-Planck had remained fully open, in spite of many efforts:

- The case of Lipschitz interactions K(x) was handled by McKean 67 and Sznitman 91 for the stochastic setting and by Braun-Hepp 77, Dobrushin 79 in the deterministic setting. Still important to further understand the framework. See for example Golse 16, Golse-Mouhot-Ricci 13, Hauray-Mischler 14, Mischler-Mouhot 13...
- Mild singularities K(x) << |x|⁻¹ were handled in Hauray-Jabin 09 and 15.
- Truncated kernels (essential for numerics) in Boers-Pickl 16, Lazarovici-Pickl 17, Pickl 19 and in Huang-Liu-Pickl with diffusion.
- Singularity not at the origin: Carrillo-Choi-Hauray-Salem 18 for swarming models.

The setting

Our new approach

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

References 2

- Deriving Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck in dimension 1 seems to be more accessible, as per Hauray-Salem 19, Guillin-Le Bris-Monmarché.
- Derivations of fluid equations or first order macroscopic systems directly from second order models are also known, see Duerinckx–Serfaty 20 and Han-Kwan–Iacobelli 21.
- Marginals also play a key role in understanding fluctuations, Lacker 21, and corrections to the mean-field limit as in Duerinckx–Saint-Raymond 21.
- Deriving collisions models is even harder, also relies on controlling the marginals (without diffusion!). See Lanford 75 and more recently Gallagher–Saint-Raymond–Texier 14, Bodineau–Gallagher–Saint-Raymond 17, Bodineau–Gallagher–Saint-Raymond–Simonella 20 or Pulvirenti–Saffirio–Simonella 14, Pulvirenti–Simonella 17

Marginals or observables

The statistical information about the system is contained in the various marginals or observables:

 $f_k(t, x_1, v_1, \dots, x_k, v_k) = Law at time t of X_1, V_1, \dots, X_k, V_k.$

For example f_1 is the 1-particle distribution, while f_2 contains information about correlations between particles. The various marginals are nested in a natural hierarchy

$$f_k(t, x_1, v_1, \dots, x_k, v_k) = \int_{\Pi^d \times \mathbb{R}^d} f_{k+1}(t, x_1, v_1, \dots, x_{k+1}, v_{k+1}) \, dx_{k+1} \, dv_{k+1}.$$

Marginals control concentrations of particles

Consider for example a small region $\Omega \subset \Pi^d \times \mathbb{R}^d$. The average proportion of particles concentrated Ω is directly given by integrating f_1 . To control concentrations, we need to bound

$\int_{\Omega} f_1(t,x,v) \, dx \, dv \ll 1, \quad \text{if } |\Omega| \ll 1.$

If Ω is a ball or spherically symmetric, we can sometimes use the potential energy. Otherwise, any L^p bound on f_1 would allow to quantify this with for example

$$\int_{\Omega} f_1(t,x,v) \, dx \, dv \leq |\Omega|^{1/2} \, \|f_1(t,.,.)\|_{L^2(\Pi^d \times \mathbb{R}^d)}$$

However if we only look at concentrations in positions with $\Omega = \omega \times \mathbb{R}^d$, we would also require control of the tails in velocity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How can we get bounds on the marginals?

There are only two already known ways of obtaining such L^p bounds on the marginals:

- Through some strong propagation of chaos. This means assuming that the (X_i^0, V_i^0) are independent and identically distributed, or i.i.d., and proving that at time t, the (X_i, V_i) are almost i.i.d. as well. This allows to use the mean-field limit to estimate concentrations. However we are instead hoping that the bounds on the marginal will help with propagation of chaos.
- Make use of the Gibbs entropy of the system. This is straightforward (see next slide) but provides a very weak estimate

$$\int_{\Omega} f_1(t,x,v) \, dx \, dv \leq \frac{C}{\log 1/|\Omega|}$$

The setting

Our new approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Gibbs entropy

Because the interactions are divergence free, the Gibbs entropy of the full joint law is decreased

$$\frac{1}{N} \int f_N(t, x_1, v_1, \dots, x_N, v_N) \log f_N dx_1 dv_1 \dots dx_N dv_N$$
$$\leq \frac{1}{N} \int f_N^0(x_1, v_1, \dots, x_N, v_N) \log f_N^0 dx_1 dv_1 \dots dx_N dv_N.$$

Moreover since the entropy is sub-additive then

$$\int f_1(t, x_1, v_1) \log f_1 \, dx_1 \, dv_1$$

$$\leq \frac{1}{N} \int f_N(t, x_1, v_1, \dots, x_N, v_N) \log f_N \, dx_1 \, dv_1 \dots dx_N \, dv_N.$$

Unfortunately, it is the only simple quantity satisfying those properties...

The setting

Our new approach •0000000

The BBGKY hierarchy

Each marginal solves a linear PDE

$$\partial_t f_k + \sum_{i=1}^k v_i \cdot \nabla_{x_i} f_k + \sum_{i \le k} \left(S(x_i) + \frac{1}{N} \sum_{j \le k} K(x_i - x_j) \right) \cdot \nabla_{v_i} f_k \\ + \frac{N-k}{N} \sum_{i \le k} \nabla_{v_i} \cdot \int_{\Pi^d \times \mathbb{R}^d} f_{k+1} K(x_i - x_{k+1}) dx_{k+1} dv_{k+1} \\ = \frac{\sigma^2}{2} \sum_{i \le k} \Delta_{v_i} f_k.$$

(2)

Unfortunately each equation involves the next marginal f_{k+1} ; more precisely and even worse because of unbounded velocities, it involves

$$\int_{\mathbb{R}^d} f_{k+1} \, dv_{k+1}.$$

Propagating bounds on f_k

In general the issue when trying to propagate L^p bound on f_k is that it would require to bound

$$\left\|\nabla_{\mathbf{v}_i}\int_{\mathbb{R}^d}f_{k+1}\,d\mathbf{v}_{k+1}\right\|_{L^p}.$$

This leads to unrealistic assumptions as the control on f_1 requires a control on $\nabla_v f_2$, then $\nabla_v^2 f_3$ and so on...

However when using the regularizing effect of the diffusion, it is possible to improve this and only require

$$\left\|\int_{\mathbb{R}^d} f_{k+1} \, dv_{k+1}\right\|_{L^p}$$

This only leaves the issue of unbounded velocities...

The setting

Our new approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Our new result

We need to use the energy reduced to k particles by defining

$$e_k(x_1, v_1, \ldots, x_k, v_k) = \sum_{i \leq k} (1 + |v_i|^2) + \frac{1}{N} \sum_{i,j \leq k} \phi(x_i - x_j),$$

for the potential ϕ s.t. $K = -\nabla \phi$.

Observe that e_k is conserved by the reduced interactions

$$\sum_{i=1}^k \left(v_i \cdot \nabla_{x_i} + \frac{1}{N} \sum_{j=1}^k \mathcal{K}(x_i - x_j) \cdot \nabla_{v_i} \right) e_k = 0.$$

For repulsive interactions, $\phi \ge 0$ and we may use e_k as a modified weight to control Gaussian decay in velocity

$$\int_{\Pi^{dk}\times\mathbb{R}^{dk}}e^{\lambda e_k}|f_k|^2\,dx_1\,dv_1\ldots dx_k\,dv_k.$$

The setting

Our new approach

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A simple differential inequality

Denote

$$X_k(t) = \int |f_{k,N}|^q e^{\lambda(t) e_k}, \quad \lambda(t) = rac{1}{\Lambda(1+t)}.$$

Then we have that

$$X_k(t) \leq X_k(0) + k L \int_0^t X_{k+1}(s) \, ds,$$

for some $L \sim ||K||_{L^p}^q$. It is straightforward to solve this hierarchy and obtain appropriate bounds provided that

$$X_k(0) \lesssim F_0^k, \quad X_N(t) \lesssim F^N.$$

Quantitative bounds on the marginals

Theorem

Assume S, $K \in L^p(\Pi^d)$ for some p > 1, $K = -\nabla \phi$ with $\phi \ge 0$. Define

$$\lambda(t)=\frac{1}{\Lambda(1+t)},$$

for a positive constant $\Lambda,$ depending only on p, q, d and $\sigma.$ Assume that

$$\int_{\Pi^{kd}\times\mathbb{R}^{kd}}|f_k^0|^q\,e^{\lambda(0)\,e_k}\leq F_0^k,$$

for some $F_0>0$ and q such that $2\leq q<\infty,$ with $1/q+1/p\leq 1.$ Then, one has that

$$\sup_{t\leq T}\int_{\Pi^{kd}\times\mathbb{R}^{kd}}|f_{k,N}|^q e^{\lambda(t)e_k}\leq 2^k F_0^k,$$

for some $T \sim 1$ independent of N.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The setting 0000000

Our new approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Implying the mean-field limit

Corollary

Under the assumptions of the previous theorem, let f be the unique smooth solution to the limiting equation with initial data $f^0 \in C^{\infty}(\Pi^d)$. Assume moreover that the initial marginals $f^0_{k,N}$ converges weakly in L^1 to $(f^0)^{\otimes k}$ for each fixed k for some M > 0 and for all $k \leq N$. Then there exists T^* depending only on M, $\|K\|_{L^p}$ and $\|(\operatorname{div} K)_-\|_{L^{\infty}}$ such that the marginals $f_{k,N}$ weakly converge to $f_k = f^{\otimes k}$ in $L^q_{loc}([0, T^*] \times \Pi^{kd})$ for any k, and any $q < \infty$.

This result can easily be made quantitative if $K \in L^p$ with p > 2and provides

$$\|f_{k,N}-f^{\otimes k}\|_{L^q}\leq \frac{C_{T,k}}{N}.$$

The setting

Our new approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusions

- Novel, straightforward quantitative estimates with minimal assumptions on the interaction kernel.
- Fits with the expected scaling of molecular chaos where $f_k = f^{\otimes k}$ but valid in any regime.
- Only holds for short times, in line with known blow-up in velocity moments for Vlasov-Poisson in dimension *d* ≥ 4.
- Provide a convergence in O(1/N) of the marginals in the mean-field limit (cf. Duerinckx, Lacker) vs. the stochastic fluctuations in $O(1/\sqrt{N})$ (see for example Fernandez-Méléard 97).

The setting 0000000

Even more straightforward for systems on bounded domains

Consider

$$\frac{d}{dt}X_i(t) = \frac{1}{N}\sum_{j\neq i}K(X_i - X_j)\,dt + \sigma\,dW_i, \quad X_i(t=0) = X_i^0,$$

fully on the torus Π^d . The mean-field limit is similar

$$\partial_t f + (K \star_x f) \cdot \nabla_x f = \frac{\sigma^2}{2} \Delta_x f.$$

Because this system does not involve unbounded velocities, many technical difficulties in our proofs actually vanish: We do not need to impose Gaussian decay or have K derive from a repulsive potential...

The setting 0000000 Our new approach

Theorem Assume that

 $K \in L^p(\Pi^d)$ for some p > 1, $(\operatorname{div} K)_- \in L^\infty(\Pi^d)$,

where x_{-} denotes the negative part of x. Let f be the unique smooth solution to the limiting equation with initial data $f^{0} \in C^{\infty}(\Pi^{d})$. Assume that the initial marginals $f_{k,N}^{0}$ converges weakly in L^{1} to $(f^{0})^{\otimes k}$ for each fixed k and that

 $\|f_{k,N}^0\|_{L^{\infty}(\Pi^{dN})} \leq M^k,$

for some M > 0 and for all $k \le N$. Then there exists T^* depending only on M, $||K||_{L^p}$ and $||(\operatorname{div} K)_-||_{L^{\infty}}$ such that the marginals $f_{k,N}$ weakly converge to $f_k = f^{\otimes k}$ in $L^q_{loc}([0, T^*] \times \Pi^{kd})$ for any k, and any $q < \infty$.