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Introduction
Our first objective is to obtain the mean-field limit for kinetic
models such as the Vlasov-Poisson-Fokker-Planck, while keeping
the full singularity.
More generally we wish to understand better the statistical
properties of large systems of agents/particles with realistic,
singular interactions:

• Can we control how agents/particles may concentrate or
aggregate in a given region? This is critical for the mean-field
limit but also of interest on its own.

• What can be said of such systems in a transient regime when
away from molecular chaos, when correlations cannot be
neglected?

• Are there physical quantities that can be propagated, at least
over some time scales, to answer this?

→ When diffusion is present, it is possible to weight observables
with the energy to do just that.
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From very large particles: Galaxies

Figure: Credits: CNRS, France; Numerical simulation of the formation of
large scale structures in the universe: Dynamics of galaxies moving to the
central concentration.
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To very small agents: Biological neurons

Figure: Credits: CNRS Bordeaux, France; 2D reconstruction of rat
hippocampus, marked for cytoskeleton protein.
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Particles or agent are everywhere

Many-particle or multi-agent systems are used in a widespread
range of applications

• Plasmas: Particles are ions or electrons.

• Astrophysics: Particles are dark matter particles, galaxies or
galaxy clusters...

• Fluids: Point vortices, suspensions...

• Bio-mechanics: Medical aerosols in the respiratory tract,
suspensions in the blood...

• Bio-Sciences: Collective behaviors of animals, swarming or
flocking, but also dynamics of micro-organisms, chemotaxis,
cell migration, neural networks...

• Social Sciences: Opinion dynamics, consensus formation...

• Economics: Mean-field games...
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Just as much variation in the number of particles

What is N the number of particles or agents under consideration?

• In cosmology/astrophysics, N ranges from 1010 to 1020−1025;
some models of dark matter even predict up to 1060 particles.

• In plasma dynamics, N is typically of order 1020 − 1025. This
is the typical order of magnitude for physics settings.

• When used for numerical purposes (particles’ methods...), the
number is of order 109 − 1012.

• In biology or Life Sciences, typical population of
micro-organisms include between 106 and 1012.

• In other applications such as collective dynamics, Social
Sciences or Economics, numbers can be much lower of order
103.
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The inside of the future Tokamak at ITER

Figure: Credits: ITER, France.
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A guiding example: The dynamics of point charges
Consider ions or electrons in a plasma when their velocities is small
enough w.r.t. the speed of light. Denote by

mi = Total mass of particle #i , qi = Total charge of particle #i ,

Xi (t) = position of the center of mass at time t,

Vi (t) = velocity of the center of mass at time t.

Then we have the following system of coupled SDE’s

d

dt
Xi (t) = Vi (t), mi dVi (t) =

∑
j 6=i

qi qj K (Xi −Xj) +σ dWi , (1)

with the electrostatic force derived by Coulomb in 1785

K (x) =
x

|x |3
in dimension 3, K (x) =

x

|x |d
in dimension d .
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A guiding example: The dynamics of point charges

Consider ions or electrons in a plasma when their velocities is small
enough w.r.t. the speed of light. Denote by

mi = Total mass of particle #i , qi = Total charge of particle #i ,

Xi (t) = position of the center of mass at time t,

Vi (t) = velocity of the center of mass at time t.

Then we have the following system of coupled SDE’s

d

dt
Xi (t) = Vi (t), mi dVi (t) =

∑
j 6=i

qi qj K (Xi −Xj) +σ dWi , (1)

where the Wi are independent Brownian motions, representing
collisions against a random background (electrons against the
background of ions for example).
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Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

d

dt
Xi = Vi , Xi (0) ∈ Πd ,

dVi = S(Xi ) dt +
1

N

∑
j 6=i

K (Xj − Xi ) dt + σ dwi , Vi (0) ∈ Rd .

We consider indistinguishable particles or agents, leading to an
exchangeable system. This is a classical assumption that makes
sense for some settings (electrons...) and less for others.
However our method would extend to non-exchangeable systems
under reasonable assumptions.
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Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

d

dt
Xi = Vi , Xi (0) ∈ Πd ,

dVi = S(Xi ) dt +
1

N

∑
j 6=i

K (Xj − Xi ) dt + σ dwi , Vi (0) ∈ Rd .

We assume the mean-field scaling, which formally makes the
interaction sum of order 1.
As long as K is homogeneous, this is equivalent to fixing the scales
and in particular the time scale.
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Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

d

dt
Xi = Vi , Xi (0) ∈ Πd ,

dVi = S(Xi ) dt +
1

N

∑
j 6=i

K (Xj − Xi ) dt + σ dwi , Vi (0) ∈ Rd .

The kernel K represents a general two-body interaction term.
Typically for us, K is unbounded and singular and we should try to
require as few assumptions as possible on it.
One may also include a self-interaction force S(x) which can be an
external magnetic fluid or self-propulsion.
It would also be possible to add a friction term −Vi dt in the force
term.
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Our model under the mean-field scaling

We consider the following multi-agent/many-particle system

d

dt
Xi = Vi , Xi (0) ∈ Πd ,

dVi = S(Xi ) dt +
1

N

∑
j 6=i

K (Xj − Xi ) dt + σ dwi , Vi (0) ∈ Rd .

For simplicity, we assume that the positions Xi are on the torus
Πd . The case of bounded domains with proper boundary
conditions could be handled in a similar manner. Taking Xi in the
whole Rd would require adjustments.
The velocities Vi are a priori unbounded in the whole space.
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Brief overview of the existing literature
The rigorous derivation of mean-field limit for
Vlasov-Poisson-Fokker-Planck had remained fully open, in spite of
many efforts:

• The case of Lipschitz interactions K (x) was handled by
McKean 67 and Sznitman 91 for the stochastic setting and by
Braun-Hepp 77, Dobrushin 79 in the deterministic setting.
Still important to further understand the framework. See for
example Golse 16, Golse-Mouhot-Ricci 13, Hauray-Mischler
14, Mischler-Mouhot 13...

• Mild singularities K (x) << |x |−1 were handled in
Hauray-Jabin 09 and 15.

• Truncated kernels (essential for numerics) in Boers-Pickl 16,
Lazarovici-Pickl 17, Pickl 19 and in Huang-Liu-Pickl with
diffusion.

• Singularity not at the origin: Carrillo-Choi-Hauray-Salem 18
for swarming models.
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References 2

• Deriving Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck in
dimension 1 seems to be more accessible, as per
Hauray-Salem 19, Guillin–Le Bris–Monmarché.

• Derivations of fluid equations or first order macroscopic
systems directly from second order models are also known, see
Duerinckx–Serfaty 20 and Han-Kwan–Iacobelli 21.

• Marginals also play a key role in understanding fluctuations,
Lacker 21, and corrections to the mean-field limit as in
Duerinckx–Saint-Raymond 21.

• Deriving collisions models is even harder, also relies on
controlling the marginals (without diffusion!). See Lanford 75
and more recently Gallagher–Saint-Raymond–Texier 14,
Bodineau–Gallagher–Saint-Raymond 17,
Bodineau–Gallagher–Saint-Raymond–Simonella 20 or
Pulvirenti–Saffirio–Simonella 14, Pulvirenti–Simonella 17
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Marginals or observables

The statistical information about the system is contained in the
various marginals or observables:

fk(t, x1, v1, . . . , xk , vk) = Law at time t of X1,V1, . . . ,Xk ,Vk .

For example f1 is the 1-particle distribution, while f2 contains
information about correlations between particles.
The various marginals are nested in a natural hierarchy

fk(t, x1, v1, . . . , xk , vk)

=

∫
Πd×Rd

fk+1(t, x1, v1, . . . , xk+1, vk+1) dxk+1 dvk+1.
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Marginals control concentrations of particles

Consider for example a small region Ω ⊂ Πd × Rd . The average
proportion of particles concentrated Ω is directly given by
integrating f1. To control concentrations, we need to bound∫

Ω
f1(t, x , v) dx dv << 1, if |Ω| << 1.

If Ω is a ball or spherically symmetric, we can sometimes use the
potential energy. Otherwise, any Lp bound on f1 would allow to
quantify this with for example∫

Ω
f1(t, x , v) dx dv ≤ |Ω|1/2 ‖f1(t, ., .)‖L2(Πd×Rd ).

However if we only look at concentrations in positions with
Ω = ω × Rd , we would also require control of the tails in velocity.
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How can we get bounds on the marginals?

There are only two already known ways of obtaining such Lp

bounds on the marginals:

• Through some strong propagation of chaos. This means
assuming that the (X 0

i ,V
0
i ) are independent and identically

distributed, or i.i.d., and proving that at time t, the (Xi ,Vi )
are almost i.i.d. as well. This allows to use the mean-field
limit to estimate concentrations. However we are instead
hoping that the bounds on the marginal will help with
propagation of chaos.

• Make use of the Gibbs entropy of the system. This is
straightforward (see next slide) but provides a very weak
estimate ∫

Ω
f1(t, x , v) dx dv ≤ C

log 1/|Ω|
.
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The Gibbs entropy

Because the interactions are divergence free, the Gibbs entropy of
the full joint law is decreased

1

N

∫
fN(t, x1, v1, . . . , xN , vN) log fN dx1 dv1 . . . dxN dvN

≤ 1

N

∫
f 0
N(x1, v1, . . . , xN , vN) log f 0

N dx1 dv1 . . . dxN dvN .

Moreover since the entropy is sub-additive then∫
f1(t, x1, v1) log f1 dx1 dv1

≤ 1

N

∫
fN(t, x1, v1, . . . , xN , vN) log fN dx1 dv1 . . . dxN dvN .

Unfortunately, it is the only simple quantity satisfying those
properties...
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The BBGKY hierarchy
Each marginal solves a linear PDE

∂t fk +
k∑

i=1

vi · ∇xi fk +
∑
i≤k

S(xi ) +
1

N

∑
j≤k

K (xi − xj)

 · ∇vi fk

+
N − k

N

∑
i≤k
∇vi ·

∫
Πd×Rd

fk+1 K (xi − xk+1)dxk+1dvk+1

=
σ2

2

∑
i≤k

∆vi fk .

(2)

Unfortunately each equation involves the next marginal fk+1; more
precisely and even worse because of unbounded velocities, it
involves ∫

Rd

fk+1 dvk+1.



Many-particle and multi-agent systems The setting Our new approach

Propagating bounds on fk

In general the issue when trying to propagate Lp bound on fk is
that it would require to bound∥∥∥∥∇vi

∫
Rd

fk+1 dvk+1

∥∥∥∥
Lp
.

This leads to unrealistic assumptions as the control on f1 requires
a control on ∇v f2, then ∇2

v f3 and so on...
However when using the regularizing effect of the diffusion, it is
possible to improve this and only require∥∥∥∥∫

Rd

fk+1 dvk+1

∥∥∥∥
Lp
.

This only leaves the issue of unbounded velocities...
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Our new result
We need to use the energy reduced to k particles by defining

ek(x1, v1, . . . , xk , vk) =
∑
i≤k

(1 + |vi |2) +
1

N

∑
i ,j≤k

φ(xi − xj),

for the potential φ s.t. K = −∇φ.
Observe that ek is conserved by the reduced interactions

k∑
i=1

vi · ∇xi +
1

N

k∑
j=1

K (xi − xj) · ∇vi

 ek = 0.

For repulsive interactions, φ ≥ 0 and we may use ek as a modified
weight to control Gaussian decay in velocity∫

Πdk×Rdk

eλek |fk |2 dx1 dv1 . . . dxk dvk .
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A simple differential inequality

Denote

Xk(t) =

∫
|fk,N |q eλ(t) ek , λ(t) =

1

Λ (1 + t)
.

Then we have that

Xk(t) ≤ Xk(0) + k L

∫ t

0
Xk+1(s) ds,

for some L ∼ ‖K‖qLp .
It is straightforward to solve this hierarchy and obtain appropriate
bounds provided that

Xk(0) . F k
0 , XN(t) . FN .
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Quantitative bounds on the marginals

Theorem
Assume S , K ∈ Lp(Πd) for some p > 1, K = −∇φ with φ ≥ 0.
Define

λ(t) =
1

Λ (1 + t)
,

for a positive constant Λ, depending only on p, q, d and σ.
Assume that ∫

Πkd×Rkd

|f 0
k |q eλ(0) ek ≤ F k

0 ,

for some F0 > 0 and q such that 2 ≤ q <∞, with 1/q + 1/p ≤ 1.
Then, one has that

sup
t≤T

∫
Πkd×Rkd

|fk,N |q eλ(t) ek ≤ 2k F k
0 ,

for some T ∼ 1 independent of N.
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Implying the mean-field limit

Corollary

Under the assumptions of the previous theorem, let f be the
unique smooth solution to the limiting equation with initial data
f 0 ∈ C∞(Πd). Assume moreover that the initial marginals f 0

k,N

converges weakly in L1 to (f 0)⊗k for each fixed k for some M > 0
and for all k ≤ N. Then there exists T ∗ depending only on M,
‖K‖Lp and ‖(divK )−‖L∞ such that the marginals fk,N weakly
converge to fk = f ⊗k in Lqloc([0, T ?]× Πkd) for any k , and any
q <∞.

This result can easily be made quantitative if K ∈ Lp with p > 2
and provides

‖fk,N − f ⊗k‖Lq ≤
CT ,k

N
.
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Conclusions

• Novel, straightforward quantitative estimates with minimal
assumptions on the interaction kernel.

• Fits with the expected scaling of molecular chaos where
fk = f ⊗k but valid in any regime.

• Only holds for short times, in line with known blow-up in
velocity moments for Vlasov-Poisson in dimension d ≥ 4.

• Provide a convergence in O(1/N) of the marginals in the
mean-field limit (cf. Duerinckx, Lacker) vs. the stochastic
fluctuations in O(1/

√
N) (see for example Fernandez-Méléard

97).
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Even more straightforward for systems on bounded
domains

Consider

d

dt
Xi (t) =

1

N

∑
j 6=i

K (Xi − Xj) dt + σ dWi , , Xi (t = 0) = X 0
i ,

fully on the torus Πd .
The mean-field limit is similar

∂t f + (K ?x f ) · ∇x f =
σ2

2
∆x f .

Because this system does not involve unbounded velocities, many
technical difficulties in our proofs actually vanish: We do not need
to impose Gaussian decay or have K derive from a repulsive
potential...
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Theorem
Assume that

K ∈ Lp(Πd) for some p > 1, (divK )− ∈ L∞(Πd),

where x− denotes the negative part of x . Let f be the unique
smooth solution to the limiting equation with initial data
f 0 ∈ C∞(Πd). Assume that the initial marginals f 0

k,N converges

weakly in L1 to (f 0)⊗k for each fixed k and that

‖f 0
k,N‖L∞(ΠdN) ≤ Mk ,

for some M > 0 and for all k ≤ N. Then there exists T ∗

depending only on M, ‖K‖Lp and ‖(divK )−‖L∞ such that the
marginals fk,N weakly converge to fk = f ⊗k in Lqloc([0, T ?]× Πkd)
for any k , and any q <∞.
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