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Background

Let S(t) be a strongly continuous semigroup on a Banach space X
with generator A. Assume that S(t) is bounded:

sup
t≥0
‖S(t)‖X→X = C̃ <∞.

Then
σ(A) ⊂ C− = {z, Re z ≤ 0}

Our goal:

Stability of S(t) i.e. limt→+∞ S(t) = 0 in some sense

l

Spectrum and Resolvent of A on iR?
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Strong stability

The following theorem [Arendt-Batty, Lyubich-Phóng, 1988] is a
sufficient condition for strong (pointwise) stability:

Theorem
If σ(A) ∩ iR is at most countable and A∗ does not have any eigenvalue
on iR then

∀x ∈ X , S(t)x −→
t→+∞

0.

Not a necessary condition (example: left shift on L2(0,+∞)).
There is no purely spectral necessary and sufficient condition for
strong stability.
Does not give the rate of decay.
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Uniform stability

The stability is uniform when lim
t→+∞

‖S(t)‖X→X = 0.

In this case, for some c,C > 0, ‖S(t)‖ ≤ Ce−ct .

The following classical result [Gearhart, 78] gives a necessary and
sufficient condition for uniform stability on Hilbert spaces:

Theorem
Assume that X is an Hilbert space and S bounded. Then:
S(t) is uniformly stable

⇐⇒ σ(A) ∩ iR = ∅ and sup
τ∈R
‖(A− iτ)−1‖ <∞.

⇐= does not hold on general Banach space.
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Damped waves

Let us give a typical example. Consider the equation:

∂2
t u −∆u + a∂tu = 0, u�∂Ω = 0

u�t=0 = u0 ∈ H1
0 (Ω), ∂tu�t=0 = u1 ∈ L2(Ω).

where Ω is a bounded smooth domain and a(x) ≥ 0. Here
X = H1

0 × L2 and the corresponding semigroup is dissipative.

the semigroup is uniformly stable if and only if the set {a > 0}
geometrically controls Ω [Bardos-Lebeau-Rauch, 92] (and
[Burq-Gérard, 97]).
In any case (if a 6= 0 and Ω is connex) [Lebeau, 1996].

‖(u(t), ∂tu(t))‖X ≤
C

log(t)
‖(u0,u1)‖D(A)

In some cases there exists α > 0 s.t.

‖(u(t), ∂tu(t))‖X ≤
C
tα
‖(u0,u1)‖D(A).
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Pseudo-uniform stability

We say that S(t) is pseudo-uniformly stable when

lim
t→+∞

‖S(t)‖D(A)→X = 0,

where ‖x‖D(A) = ‖x‖+ ‖Ax‖ ≈ ‖(A + i)−1x‖

This means that there exists m(t) −→ 0
t→+∞

such that

‖S(t)x‖ ≤ m(t)‖x‖D(A).

Lot of PDE examples (m(t) typically C/ log(t) or C/ts, s > 0).

Uniform stability =⇒ pseudo-uniform stability =⇒ strong stability.

Pseudo-uniform stability ⇐⇒ limt→+∞ ‖S(t)‖D(Ak )→X = 0, k > 0.
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Spectral condition

Let S(t) be a bounded semigroup with generator A. Then

Theorem (C. Batty, TD)
The following conditions are equivalent.

1 S(t) is pseudo-uniformly stable.

2 σ(A) ∩ iR = ∅.

(2)=⇒(1) implicit in [Arendt-Batty 88], explicit in [Batty 94].

(1)=⇒(2) seemed unknown.

Purely spectral criterion (not the case for pointwise stability and
uniform stability).
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Rate of decay

If S(t) is pseudo-uniformly stable, we have

‖S(t)x‖ ≤ m(t)‖x‖D(A), where

lim
t→+∞

m(t) = 0, m(t) := ‖S(t)‖D(A)→X .

Bound on m(t)?

Let

M(λ) := sup
τ∈[−λ,λ]

∥∥∥(A− iτ)−1
∥∥∥

X→X
<∞.

The proof of (1)=⇒(2) implies that for some C > 0

M(λ) ≤ Cm−1
(

1
Cλ

)
, λ� 1.

We want a “converse” bound, maybe m(t) ≤ C/M−1 (t/C).
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Rate of decay

Recall M(λ) := supτ∈[−λ,λ]

∥∥(A− iτ)−1
∥∥

X→X <∞ (nondecreasing).
Introduce

Mlog(λ) := M(λ)
[

log(1 + M(λ)) + log(1 + λ)
]

(strictly increasing).

Then

Theorem (Batty, TD)
If S(t) is pseudo-uniformly stable, there exists C > 0 such that

‖S(t)‖D(A)→X ≤ C/M−1
log (t/C) , t � 1.

This is not the optimal excepted decay (M−1 replaced by M−1
log ).

The “smoother” the initial condition, the faster the decay:

‖S(t)‖D(Ak )→X ≤ Ck

(
M−1

log

(
t

Ck

))−k

, t � 1.
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Examples and previous results

Logarithmic decay: if M(λ) ≤ C exp(Cλ), we obtain

‖S(t)x‖ ≤ C
log(2 + t)

‖x‖D(A).

The log loss is invisible. Already known in Hilbert spaces [Lebeau
96, Burq 98]. Example: wave equation on a bounded connex
domain with a localized damping term.

Polynomial decay: if M(λ) = λs, s > 0, we obtain

‖S(t)x‖ ≤ C
(

log t
t

)1/s

‖x‖D(A), t � 1.

Generalizes previous results of [Batkai-Engel-Prüss-Schnaubelt
06], [Liu-Rao 07]. Example: wave equation with a localized
damping term in a rectangle domain.
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Optimality

Assume that σ(A) ∩ iR = ∅, that X is a Hilbert space and

sup
τ∈R

∥∥∥(A− iτ)−1
∥∥∥

X→X
<∞.

Then by the classical theorem on uniform stability

‖S(t)x‖ ≤ Ce−ct‖x‖. (*)

Counter-examples exist if X is not an Hilbert space.

On the other hand Mlog(τ) ≈ log(τ), and thus by our previous theorem,

‖S(t)x‖ ≤ Ce−ct‖x‖D(A).

By (*), this is not optimal in the Hilbert space case.
Conjecture: one can get better result in the Hilbert space case. (Maybe
the optimal decay without the log loss?). Already known for normal
operators in the polynomial case [Batkai-Engel-Prüss-Schnaubelt 06].
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Optimal polynomial decay

The conjecture is true in the case of polynomial decay [Borichev,
Tomilov, preprint 2009].

Theorem
If X is an Hilbert space, σ(A) ∩ iR = ∅ and
∃s > 0,

∥∥(A− iτ)−1
∥∥

X→X ≤ Cτ s. Then

‖S(t)‖D(A)→X ≤
C′

t1/s , t ≥ 1.

Optimal decay.
Interesting for applications to PDE.

Our theorem gives
(

log t
t

)1/s
instead of 1

t1/s . In general Banach
space, the log-loss cannot be avoided [Borichev, Tomilov].
See next talk!
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Reminder of the main result

Recall
M(λ) := sup

τ∈[−λ,λ]

∥∥∥(A− iτ)−1
∥∥∥

X→X
<∞

(nondecreasing). Introduce

Mlog(λ) := M(λ)
[

log(1 + M(λ)) + log(1 + λ)
]

(strictly increasing).

Then

Theorem
If S(t) is pseudo-uniformly stable, there exists C > 0 such that

‖A−1S(t)‖X→X ≤ C/M−1
log (t/C) , t � 1.

Batty and Duyckaerts (Oxford, Cergy) Stability of semigroups 2009 14 / 24



Reminder of the main result

Recall
M(λ) := sup

τ∈[−λ,λ]

∥∥∥(A− iτ)−1
∥∥∥

X→X
<∞

(nondecreasing). Introduce

Mlog(λ) := M(λ)
[

log(1 + M(λ)) + log(1 + λ)
]

(strictly increasing). Then

Theorem
If S(t) is pseudo-uniformly stable, there exists C > 0 such that

‖A−1S(t)‖X→X ≤ C/M−1
log (t/C) , t � 1.

Batty and Duyckaerts (Oxford, Cergy) Stability of semigroups 2009 14 / 24



Sketch of the proof

The proof is essentially the initial step of the induction of [Arendt-Batty
1988] (inspired by a Tauberian theorem of Ingham).

by standard Neumann series, the resolvent can be expanded
analytically to Re z < 0, z close to the imaginary axis.

use a representation of A−1S(t) in term of a contour integral of the
resovent.

a etz term appears in the integral which will yield decay when
Re z < 0.

to bound other terms we use a trick due to Newman and Korevaar.
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Proof of main result

Assuming iR ∩ σ(A) = ∅, we will bound ‖A−1S(t)‖X→X .
Fix t � 1, let R � 1 (depending on t). Recall

M(R) := sup
σ∈[−R,R]

∥∥∥(iσ − A)−1
∥∥∥

X→X
.

By standard Neumann expansion, (A− z)−1 is analytic on
F =

{
Re z ≥ 1

2M(Im z)

}
, and∥∥∥(z − A)−1
∥∥∥

X→X
≤ 2M(| Im z|) in F ∩ {Re z ≤ 0}.

Let Γ ⊂ F be a contour (0 inside Γ). By Cauchy formula

S(t)A−1 = etAA−1 =
1

2iπ

∫
Γ
(z − A)−1etA dz

z
.
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The trick of Newman and Korevaar
Im z

Re z

y = 1
2M(x)

Spectrum
of A on this side

ΓR

1
2 M(R)

A−1S(t)

=
1

2iπ

∫
Γ
(z − A)−1etA dz

z
.
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Re z

y = 1
2M(x)

Spectrum
of A on this side

ΓR

1
2 M(R)

A−1S(t)

=
1

2iπ

∫
Γ

(
1 +

z2

R2

)
(z − A)−1etA dz

z
.

Claim 1.∥∥A−1S(t)
∥∥ ≤ C

R

+ 1
2π

∥∥∥∫γ (1 + z2

R2

)
(z − A)−1etz dz

z

∥∥∥.

γ
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Proof of Claim 1 (A)

S(t)A−1 − 1
2πi

∫
γ

(
1 + z2

R2

)
(z − A)−1etz dz

z

= 1
2πi

∫
C∪γ

(
1 + z2

R2

)
(z − A)−1etA dz

z

− 1
2πi

∫
γ

(
1 + z2

R2

)
(z − A)−1etz dz

z

Cγ

= 1
2πi

∫
C

(
1 + z2

R2

)
(z − A)−1etA dz

z

+ 1
2πi

∫
γ

(
1 + z2

R2

)
(z − A)−1 (etA − etz) dz

z

Goal: bound this two terms by C
R .

We will only bound the first term.
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Proof of Claim 1 (B)

∥∥∥(z − A)−1etA
∥∥∥ =

∥∥∥∥etz
∫ +∞

t
e−(z−A)s ds

∥∥∥∥

On C, z = Reiθ, θ ∈ [−π/2, π/2]. Thus:∥∥∥∥etz
∫ +∞

t
e−(z−A)s ds

∥∥∥∥
≤
∣∣∣∣etz

∫ +∞

t
C̃
∣∣e−zs∣∣ ds

∣∣∣∣ =

∣∣∣∣etz
∫ +∞

t
C̃e−R(cos θ)s ds

∣∣∣∣
≤ C̃

R cos θ
.

Using that
∣∣∣1 + z2

R2

∣∣∣ = 2| cos θ|, we get∣∣∣∣∫
C

(
1 +

z2

R2

)
(z − A)−1etA dz

z

∣∣∣∣ ≤ 2C̃
R
.
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Proof of Claim 1 (C)

Bounding the other term we get Claim 1:∥∥∥S(t)A−1
∥∥∥ ≤ C

R
+

1
2π

∥∥∥∥∫
γ

(
1 +

z2

R2

)
(z − A)−1etz dz

z

∥∥∥∥ .

Claim 2:
∥∥∥∫γ (1 + z2

R2

)
(z − A)−1etz dz

z

∥∥∥ ≤ 16e−t/M(R)RM(R)2 + C
R .

γ

Indeed∫
γ
. . . =

∫
Re z=− 1

2M(R)

−R≤Im z≤R

. . .+

∫
− 1

2M(R)
≤Re z≤0

| Im z|=R

. . .
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Proof of Claim 2

∥∥∥∥∥∥
∫

Re z=− 1
2M(R)

−R≤Im z≤R

. . .

∥∥∥∥∥∥ ≤
∫

Re z=− 1
2M(R)

−R≤Im z≤R

∣∣∣∣1 +
z2

R2

∣∣∣∣︸ ︷︷ ︸
≤4

∥∥∥(z − A)−1
∥∥∥︸ ︷︷ ︸

≤2M(R)

∣∣etz∣∣︸︷︷︸
=e
− t

2M(R)

dz
z

≤ 16RM(R)2e−
t

2M(R) .

Combining with the straightforward bound∥∥∥∥∥∥
∫
− 1

2M(R)
≤Re z≤0

| Im z|=R

(
1 +

z2

R2

)
(z − A)−1etz dz

z

∥∥∥∥∥∥ ≤ C
R
,

we get Claim 2. Claim 1 and Claim 2 imply:∥∥∥S(t)A−1
∥∥∥ ≤ C

R
+ CRM(R)2e−

t
2M(R) .
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End of the proof

∥∥∥S(t)A−1
∥∥∥ ≤ C

R
+ CRM(R)2e−

t
2M(R) .

Implies immediately limt→+∞
∥∥S(t)A−1

∥∥ = 0. . . exactly the first step of
the proof of [Arendt-Batty 88].

Quantitative version: chose R such that

t = 4M(R)
[

log(1 + M(R)) + log(1 + R)
]

= 4Mlog(R).

Then ∥∥∥S(t)A−1
∥∥∥ ≤ C

R
≤ C

M−1
log

( t
4

) .
The proof is complete.
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