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Norms of Semigroup Operators

There are several distinct issues for a one-parameter semigroup Tt = eAt

acting in a Banach space B.

The long time asymptotics of ‖Tt‖;
The short time asymptotics of ‖Tt‖;
The intermediate time behaviour of ‖Tt‖;
The spectrum of A;

The behaviour of the norms of the resolvent operators
Rz = (zI − A)−1.
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The Classical Bounds

Every semigroup has a bound of the form

‖Tt‖ ≤ Meat for all t ≥ 0.

This implies that
‖Rz‖ ≤ M(Re (z)− a)−1

for all z satisfying Re (z) > a.

The precise form of the converse was proved by Feller, Miyadera and
Phillips.
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Dissipativity

If B is a Hilbert space and

Re 〈Af , f 〉 ≤ a

for all f ∈ Dom(A) then

‖Tt‖ ≤ eat for all t ≥ 0

and conversely.
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The Asymptotic Growth Rate

The infimum of all possible a is given by

ω0 = lim
t→+∞

t−1 log(‖Tt‖).

This implies that
Spec(A) ⊆ {z : Re (z) ≤ ω0}

and
‖Tt‖ ≥ eω0t for all t > 0.
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Zabczyk’s Example1

Spec(Tt) ⊇
{
ezt : z ∈ Spec(A)

}
.

but the two sides need not be equal.

There exists a one-parameter group Tt acting in a Hilbert space H such
that

Spec(A) ⊆ iR

but
‖Tt‖ = e|t| for all t ∈ R.

1Zabczyk 1975
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The Schrödinger Group2

The operators Tt = ei∆t are unbounded on Lp(Rn) for all p 6= 2 and
0 6= t ∈ R in spite of the fact that

Spec(∆) ⊆ R.

The resolvents of ∆ satisfy

‖Rz‖ ≤ cp|Im (z)|−1

for all z /∈ R, where cp → 1 as p → 2.

2Hormander 1960
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An Indefinite ODE3

If H = L2(−π, π) and 0 < ε < 2 and

(Lf )(θ) = ε
d
dθ

{
sin(θ)

df

dθ

}
+

df

dθ

then
df

dt
= Lf (t)

describes the evolution of a thin fluid layer inside a rotating cylinder.

3Benilov, O’Brien, Sazonov, Weir et al. 2000-2008
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An Indefinite ODE4

If 0 < ε < 2 then L has purely imaginary spectrum consisting of a discrete
sequence of eigenvalues.

If ε > 2 then the spectrum of L includes the entire imaginary axis and
probably the entire complex plane.

If 0 < ε < 2 the resolvent operators are all compact but eLt is unbounded
for all t 6= 0.

4Benilov, O’Brien, Sazonov, Weir et al. 2000-2008
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An Example with an Oscillating Norm

Let

(Tt f )(x) =
a(x + t)

a(x)
f (x + t)

for all f ∈ L2(0,∞) and all t ≥ 0.

If c > 1 then the choice

a(x) = 1 + (c − 1) sin2(πx/2)

leads to ‖T2n‖ = 1 and ‖T(2n+1)‖ = c for all positive integers n.

Study of N(t)
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Definition of N(t)5

We define N(t) to be the upper log-concave envelope of ‖Tt‖.

In other words ν(t) = log(N(t)) is defined to be the smallest concave
function satisfying ν(t) ≥ log(‖Tt‖) for all t ≥ 0.

It is immediate that N(t) is continuous for t > 0, and that

1 = N(0) ≤ lim
t→0+

N(t).

5The following is based on EBD 2004, inspired by L N Trefethen
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Normalization

We replace Tt by Tte−ω0t or, equivalently, normalize our problem by
assuming that ω0 = 0.

This implies that Spec(A) ⊆ {z : Re (z) ≤ 0}.

It also implies that ‖Tt‖ ≥ 1 for all t ≥ 0.

N(t) is increasing function of t but it increases sub-exponentially as
t → +∞.
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The Legendre Transform

We study the function N(t) via a transform, defined for all ω > 0 by

M(ω) = sup{‖Tt‖e−ωt : t ≥ 0}.

M(ω) is a monotonic decreasing function of ω which satisfies

lim
ω→+∞

M(ω) = lim sup
t→0

‖Tt‖.

Hence M(ω) ≥ 1 for all ω > 0.

N(t) = inf{M(ω)eωt : 0 < ω <∞}

for all t > 0 by the theory of the Legendre transform.
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Theorem

If a > 0, b ∈ R and a‖Ra+ib‖ = c ≥ 1 then

M(ω) ≥ M̃(ω) :=

{
(a− ω)c/a if 0 < ω ≤ r = a(1− 1/c)
1 otherwise.

Proof.

The formula

Ra+ib =

∫ ∞
0

Tte−(a+ib)t dt

implies that

c/a ≤
∫ ∞

0
N(t)e−at dt ≤

∫ ∞
0

M(ω)eωt−at dt = M(ω)(a− ω)−1

for all ω such that 0 < ω < a.
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The following theorem implies that if the resolvent norm is significantly
larger than 1/a for some large a then N(t) must grow rapidly for small
t > 0.

Theorem

If a‖Ra+ib‖ = c ≥ 1 and r = a(1− 1/c) then

N(t) ≥ min{ert , c}

for all t ≥ 0.

Proof.

This uses

N(t) = inf{M(ω)eωt : ω > 0} ≥ inf{M̃(ω)eωt : ω > 0}.

Schrodinger operators
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Schrödinger Operators with Non-Negative Potentials

Theorem

Let H = −∆ + V , acting in L1(Rn), where V ≥ 0. Then

(e−Ht f )(x) =

∫
Rn

K (t, x , y)f (y) dy

where
0 ≤ K (t, x , y) ≤ (4πt)−n/2e−|x−y |2/4t .

This can be proved by functional integration or the Trotter product
formula.
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Schrödinger Operators with Potentials Bounded Below

Theorem

Let H = −∆ + V , acting in L1(Rn), where V is continuous and bounded
below, with

c = − inf{V (x) : x ∈ RN}.

Then
c = min{ω : ‖e−Ht‖ ≤ eωt for all t ≥ 0}.

Note that the situation is quite different in L2(Rn).
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Polynomial Growth of L1 Norms

Theorem (Murata 1984, 1985 and Davies-Simon 1991.)

Let N ≥ 3. There exists a Schrödinger semigroup e−Kt acting in L1(RN)
and positive constants c1, c2, σ1 and σ2 such that

c1(1 + t)σ1 ≤ ‖e−Kt‖ ≤ c2(1 + t)σ2

for all t ≥ 0, even though K is non-negative considered as an operator
acting in L2(RN).

The constants σ1 and σ2 are more or less equal.

The proof involves zero energy resonances.
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The Explicit Example

The potential is given by

V (x) =

{
−c|x |−2 if |x | ≥ 1

0 otherwise.

where

0 < c <
(n − 2)2

4
.

The zero energy resonance is of the form

0 < η(x) =

{
|x |−α1 − β |x |−α2 if |x | ≥ 1

1− β otherwise

for certain positive constants α1, α2 and β.
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